982 resultados para Gel Dosimetry, Monte Carlo Modelling
Resumo:
The effects of structural breaks in dynamic panels are more complicated than in time series models as the bias can be either negative or positive. This paper focuses on the effects of mean shifts in otherwise stationary processes within an instrumental variable panel estimation framework. We show the sources of the bias and a Monte Carlo analysis calibrated on United States bank lending data demonstrates the size of the bias for a range of auto-regressive parameters. We also propose additional moment conditions that can be used to reduce the biases caused by shifts in the mean of the data.
Resumo:
Vector Autoregressive Moving Average (VARMA) models have many theoretical properties which should make them popular among empirical macroeconomists. However, they are rarely used in practice due to over-parameterization concerns, difficulties in ensuring identification and computational challenges. With the growing interest in multivariate time series models of high dimension, these problems with VARMAs become even more acute, accounting for the dominance of VARs in this field. In this paper, we develop a Bayesian approach for inference in VARMAs which surmounts these problems. It jointly ensures identification and parsimony in the context of an efficient Markov chain Monte Carlo (MCMC) algorithm. We use this approach in a macroeconomic application involving up to twelve dependent variables. We find our algorithm to work successfully and provide insights beyond those provided by VARs.
Resumo:
Time-lapse crosshole ground-penetrating radar (GPR) data, collected while infiltration occurs, can provide valuable information regarding the hydraulic properties of the unsaturated zone. In particular, the stochastic inversion of such data provides estimates of parameter uncertainties, which are necessary for hydrological prediction and decision making. Here, we investigate the effect of different infiltration conditions on the stochastic inversion of time-lapse, zero-offset-profile, GPR data. Inversions are performed using a Bayesian Markov-chain-Monte-Carlo methodology. Our results clearly indicate that considering data collected during a forced infiltration test helps to better refine soil hydraulic properties compared to data collected under natural infiltration conditions
Resumo:
This paper develops a new test of true versus spurious long memory, based on log-periodogram estimation of the long memory parameter using skip-sampled data. A correction factor is derived to overcome the bias in this estimator due to aliasing. The procedure is designed to be used in the context of a conventional test of significance of the long memory parameter, and composite test procedure described that has the properties of known asymptotic size and consistency. The test is implemented using the bootstrap, with the distribution under the null hypothesis being approximated using a dependent-sample bootstrap technique to approximate short-run dependence following fractional differencing. The properties of the test are investigated in a set of Monte Carlo experiments. The procedure is illustrated by applications to exchange rate volatility and dividend growth series.
Resumo:
Properties of GMM estimators for panel data, which have become very popular in the empirical economic growth literature, are not well known when the number of individuals is small. This paper analyses through Monte Carlo simulations the properties of various GMM and other estimators when the number of individuals is the one typically available in country growth studies. It is found that, provided that some persistency is present in the series, the system GMM estimator has a lower bias and higher efficiency than all the other estimators analysed, including the standard first-differences GMM estimator.
Resumo:
Consider a model with parameter phi, and an auxiliary model with parameter theta. Let phi be a randomly sampled from a given density over the known parameter space. Monte Carlo methods can be used to draw simulated data and compute the corresponding estimate of theta, say theta_tilde. A large set of tuples (phi, theta_tilde) can be generated in this manner. Nonparametric methods may be use to fit the function E(phi|theta_tilde=a), using these tuples. It is proposed to estimate phi using the fitted E(phi|theta_tilde=theta_hat), where theta_hat is the auxiliary estimate, using the real sample data. This is a consistent and asymptotically normally distributed estimator, under certain assumptions. Monte Carlo results for dynamic panel data and vector autoregressions show that this estimator can have very attractive small sample properties. Confidence intervals can be constructed using the quantiles of the phi for which theta_tilde is close to theta_hat. Such confidence intervals are found to have very accurate coverage.
Resumo:
As part of a project to use the long-lived (T(1/2)=1200a) (166m)Ho as reference source in its reference ionisation chamber, IRA standardised a commercially acquired solution of this nuclide using the 4pibeta-gamma coincidence and 4pigamma (NaI) methods. The (166m)Ho solution supplied by Isotope Product Laboratories was measured to have about 5% Europium impurities (3% (154)Eu, 0.94% (152)Eu and 0.9% (155)Eu). Holmium had therefore to be separated from europium, and this was carried out by means of ion-exchange chromatography. The holmium fractions were collected without europium contamination: 162h long HPGe gamma measurements indicated no europium impurity (detection limits of 0.01% for (152)Eu and (154)Eu, and 0.03% for (155)Eu). The primary measurement of the purified (166m)Ho solution with the 4pi (PC) beta-gamma coincidence technique was carried out at three gamma energy settings: a window around the 184.4keV peak and gamma thresholds at 121.8 and 637.3keV. The results show very good self-consistency, and the activity concentration of the solution was evaluated to be 45.640+/-0.098kBq/g (0.21% with k=1). The activity concentration of this solution was also measured by integral counting with a well-type 5''x5'' NaI(Tl) detector and efficiencies computed by Monte Carlo simulations using the GEANT code. These measurements were mutually consistent, while the resulting weighted average of the 4pi NaI(Tl) method was found to agree within 0.15% with the result of the 4pibeta-gamma coincidence technique. An ampoule of this solution and the measured value of the concentration were submitted to the BIPM as a contribution to the Système International de Référence.
Resumo:
Abstract. Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Because conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. It is shown that as the number of simulations diverges, the estimator is consistent and a higher-order expansion reveals the stochastic difference between the infeasible GMM estimator based on the same moment conditions and the simulated version. In particular, we show how to adjust standard errors to account for the simulations. Monte Carlo results show how the estimator may be applied to a range of dynamic latent variable (DLV) models, and that it performs well in comparison to several other estimators that have been proposed for DLV models.
Resumo:
To describe the collective behavior of large ensembles of neurons in neuronal network, a kinetic theory description was developed in [13, 12], where a macroscopic representation of the network dynamics was directly derived from the microscopic dynamics of individual neurons, which are modeled by conductance-based, linear, integrate-and-fire point neurons. A diffusion approximation then led to a nonlinear Fokker-Planck equation for the probability density function of neuronal membrane potentials and synaptic conductances. In this work, we propose a deterministic numerical scheme for a Fokker-Planck model of an excitatory-only network. Our numerical solver allows us to obtain the time evolution of probability distribution functions, and thus, the evolution of all possible macroscopic quantities that are given by suitable moments of the probability density function. We show that this deterministic scheme is capable of capturing the bistability of stationary states observed in Monte Carlo simulations. Moreover, the transient behavior of the firing rates computed from the Fokker-Planck equation is analyzed in this bistable situation, where a bifurcation scenario, of asynchronous convergence towards stationary states, periodic synchronous solutions or damped oscillatory convergence towards stationary states, can be uncovered by increasing the strength of the excitatory coupling. Finally, the computation of moments of the probability distribution allows us to validate the applicability of a moment closure assumption used in [13] to further simplify the kinetic theory.
Resumo:
Since 1895, when X-rays were discovered, ionizing radiation became part of our life. Its use in medicine has brought significant health benefits to the population globally. The benefit of any diagnostic procedure is to reduce the uncertainty about the patient's health. However, there are potential detrimental effects of radiation exposure. Therefore, radiation protection authorities have become strict regarding the control of radiation risks.¦There are various situations where the radiation risk needs to be evaluated. International authority bodies point to the increasing number of radiologic procedures and recommend population surveys. These surveys provide valuable data to public health authorities which helps them to prioritize and focus on patient groups in the population that are most highly exposed. On the other hand, physicians need to be aware of radiation risks from diagnostic procedures in order to justify and optimize the procedure and inform the patient.¦The aim of this work was to examine the different aspects of radiation protection and investigate a new method to estimate patient radiation risks.¦The first part of this work concerned radiation risk assessment from the regulatory authority point of view. To do so, a population dose survey was performed to evaluate the annual population exposure. This survey determined the contribution of different imaging modalities to the total collective dose as well as the annual effective dose per caput. It was revealed that although interventional procedures are not so frequent, they significantly contribute to the collective dose. Among the main results of this work, it was shown that interventional cardiological procedures are dose-intensive and therefore more attention should be paid to optimize the exposure.¦The second part of the project was related to the patient and physician oriented risk assessment. In this part, interventional cardiology procedures were studied by means of Monte Carlo simulations. The organ radiation doses as well as effective doses were estimated. Cancer incidence risks for different organs were calculated for different sex and age-at-exposure using the lifetime attributable risks provided by the Biological Effects of Ionizing Radiations Report VII. Advantages and disadvantages of the latter results were examined as an alternative method to estimate radiation risks. The results show that this method is the most accurate, currently available, to estimate radiation risks. The conclusions of this work may guide future studies in the field of radiation protection in medicine.¦-¦Depuis la découverte des rayons X en 1895, ce type de rayonnement a joué un rôle important dans de nombreux domaines. Son utilisation en médecine a bénéficié à la population mondiale puisque l'avantage d'un examen diagnostique est de réduire les incertitudes sur l'état de santé du patient. Cependant, leur utilisation peut conduire à l'apparition de cancers radio-induits. Par conséquent, les autorités sanitaires sont strictes quant au contrôle du risque radiologique.¦Le risque lié aux radiations doit être estimé dans différentes situations pratiques, dont l'utilisation médicale des rayons X. Les autorités internationales de radioprotection indiquent que le nombre d'examens et de procédures radiologiques augmente et elles recommandent des enquêtes visant à déterminer les doses de radiation délivrées à la population. Ces enquêtes assurent que les groupes de patients les plus à risque soient prioritaires. D'un autre côté, les médecins ont également besoin de connaître le risque lié aux radiations afin de justifier et optimiser les procédures et informer les patients.¦Le présent travail a pour objectif d'examiner les différents aspects de la radioprotection et de proposer une manière efficace pour estimer le risque radiologique au patient.¦Premièrement, le risque a été évalué du point de vue des autorités sanitaires. Une enquête nationale a été réalisée pour déterminer la contribution des différentes modalités radiologiques et des divers types d'examens à la dose efficace collective due à l'application médicale des rayons X. Bien que les procédures interventionnelles soient rares, elles contribuent de façon significative à la dose délivrée à la population. Parmi les principaux résultats de ce travail, il a été montré que les procédures de cardiologie interventionnelle délivrent des doses élevées et devraient donc être optimisées en priorité.¦La seconde approche concerne l'évaluation du risque du point de vue du patient et du médecin. Dans cette partie, des procédures interventionnelles cardiaques ont été étudiées au moyen de simulations Monte Carlo. La dose délivrée aux organes ainsi que la dose efficace ont été estimées. Les risques de développer des cancers dans plusieurs organes ont été calculés en fonction du sexe et de l'âge en utilisant la méthode établie dans Biological Effects of Ionizing Radiations Report VII. Les avantages et inconvénients de cette nouvelle technique ont été examinés et comparés à ceux de la dose efficace. Les résultats ont montré que cette méthode est la plus précise actuellement disponible pour estimer le risque lié aux radiations. Les conclusions de ce travail pourront guider de futures études dans le domaine de la radioprotection en médicine.
Resumo:
The purpose of this study was to develop a two-compartment metabolic model of brain metabolism to assess oxidative metabolism from [1-(11)C] acetate radiotracer experiments, using an approach previously applied in (13)C magnetic resonance spectroscopy (MRS), and compared with an one-tissue compartment model previously used in brain [1-(11)C] acetate studies. Compared with (13)C MRS studies, (11)C radiotracer measurements provide a single uptake curve representing the sum of all labeled metabolites, without chemical differentiation, but with higher temporal resolution. The reliability of the adjusted metabolic fluxes was analyzed with Monte-Carlo simulations using synthetic (11)C uptake curves, based on a typical arterial input function and previously published values of the neuroglial fluxes V(tca)(g), V(x), V(nt), and V(tca)(n) measured in dynamic (13)C MRS experiments. Assuming V(x)(g)=10 × V(tca)(g) and V(x)(n)=V(tca)(n), it was possible to assess the composite glial tricarboxylic acid (TCA) cycle flux V(gt)(g) (V(gt)(g)=V(x)(g) × V(tca)(g)/(V(x)(g)+V(tca)(g))) and the neurotransmission flux V(nt) from (11)C tissue-activity curves obtained within 30 minutes in the rat cortex with a beta-probe after a bolus infusion of [1-(11)C] acetate (n=9), resulting in V(gt)(g)=0.136±0.042 and V(nt)=0.170±0.103 μmol/g per minute (mean±s.d. of the group), in good agreement with (13)C MRS measurements.
Resumo:
Given a sample from a fully specified parametric model, let Zn be a given finite-dimensional statistic - for example, an initial estimator or a set of sample moments. We propose to (re-)estimate the parameters of the model by maximizing the likelihood of Zn. We call this the maximum indirect likelihood (MIL) estimator. We also propose a computationally tractable Bayesian version of the estimator which we refer to as a Bayesian Indirect Likelihood (BIL) estimator. In most cases, the density of the statistic will be of unknown form, and we develop simulated versions of the MIL and BIL estimators. We show that the indirect likelihood estimators are consistent and asymptotically normally distributed, with the same asymptotic variance as that of the corresponding efficient two-step GMM estimator based on the same statistic. However, our likelihood-based estimators, by taking into account the full finite-sample distribution of the statistic, are higher order efficient relative to GMM-type estimators. Furthermore, in many cases they enjoy a bias reduction property similar to that of the indirect inference estimator. Monte Carlo results for a number of applications including dynamic and nonlinear panel data models, a structural auction model and two DSGE models show that the proposed estimators indeed have attractive finite sample properties.
Resumo:
This paper proposes a new methodology to compute Value at Risk (VaR) for quantifying losses in credit portfolios. We approximate the cumulative distribution of the loss function by a finite combination of Haar wavelet basis functions and calculate the coefficients of the approximation by inverting its Laplace transform. The Wavelet Approximation (WA) method is specially suitable for non-smooth distributions, often arising in small or concentrated portfolios, when the hypothesis of the Basel II formulas are violated. To test the methodology we consider the Vasicek one-factor portfolio credit loss model as our model framework. WA is an accurate, robust and fast method, allowing to estimate VaR much more quickly than with a Monte Carlo (MC) method at the same level of accuracy and reliability.
Resumo:
This paper analyses the impact of using different correlation assumptions between lines of business when estimating the risk-based capital reserve, the Solvency Capital Requirement (SCR), under Solvency II regulations. A case study is presented and the SCR is calculated according to the Standard Model approach. Alternatively, the requirement is then calculated using an Internal Model based on a Monte Carlo simulation of the net underwriting result at a one-year horizon, with copulas being used to model the dependence between lines of business. To address the impact of these model assumptions on the SCR we conduct a sensitivity analysis. We examine changes in the correlation matrix between lines of business and address the choice of copulas. Drawing on aggregate historical data from the Spanish non-life insurance market between 2000 and 2009, we conclude that modifications of the correlation and dependence assumptions have a significant impact on SCR estimation.
Credit risk contributions under the Vasicek one-factor model: a fast wavelet expansion approximation
Resumo:
To measure the contribution of individual transactions inside the total risk of a credit portfolio is a major issue in financial institutions. VaR Contributions (VaRC) and Expected Shortfall Contributions (ESC) have become two popular ways of quantifying the risks. However, the usual Monte Carlo (MC) approach is known to be a very time consuming method for computing these risk contributions. In this paper we consider the Wavelet Approximation (WA) method for Value at Risk (VaR) computation presented in [Mas10] in order to calculate the Expected Shortfall (ES) and the risk contributions under the Vasicek one-factor model framework. We decompose the VaR and the ES as a sum of sensitivities representing the marginal impact on the total portfolio risk. Moreover, we present technical improvements in the Wavelet Approximation (WA) that considerably reduce the computational effort in the approximation while, at the same time, the accuracy increases.