974 resultados para GEL-PHASE MATERIALS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hot dip Zn-Al alloy coating performs better than hot dip galvanized coating and 55% Al-Zn-Si coating as well with regard to general seawater corrosion protection. A characterization of the corrosion products on Zn-Al alloy coating immersed in dynamic aerated seawater has been performed mainly based on transmission electron microscopy (TEM) for morphological analysis and X-ray diffraction (XRD) technique for crystalline phase identification. The XRD and TEM analyses showed that the corrosion products mainly were typical nanometer Zn4CO3(OH)(6).H2O, Zn-5(OH)(8)Cl-2 and Zn6Al2CO3(OH)(16). 4H(2)O microcrystals. This probably is connected to the co-precipitation of Zn2+ and Al3+ ions caused by adsorption. Zn-Al alloy coating being suffered seawater attacks, AI(OH)(3) gel was first produced on the coating surface. Zn and Al hydroxides would co-precipitate and form double-hydroxide when the concentration of adsorbed Zn2+ ions by the newly produced gel exceeded the critical degree of supersaturation of the interphase nucleation. However, because the growth of the crystals was too low to keep in step with the nucleation, a layer of nano-crystalline corrosion products were produced on the surface of the coating finally. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method of synthesizing protein chiral stationary phase (protein-CSP) is proposed with 2,4,6-trichloro-1,3,5-triazine as the activator. The bovine serum albumin (BSA) based chiral columns (150x4.6 mm I.D.) were prepared successfully within 8 h. With tryptophan as the probe solute, it was observed that the BSA immobilized by this method had a better ability to distinguish enantiomers than that activated by glutaric dialdehyde. This may be due to the well-maintained BSA conformation and the larger amount of BSA immobilized on the silica gel. The BSA-CSP prepared by this method was relatively stable under experimental conditions, and the resolution of 13 chiral compounds was achieved. The coupling reaction in this method is mild, reliable and reproducible; it is also suitable for the immobilization of various biopolymers in the preparation of bioreactor, biosensor and affinity chromatography columns. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reversed-phase high-performance liquid chromatographic (RP-HPLC) retention parameters, which are determined by the intermolecular interactions in retention process, can be considered as the chemical molecular descriptors in linear free energy relationships (LFERs). On the basis of the characterization and comparison of octadecyl-bonded silica gel (ODS), cyano-bonded silica gel (CN), and phenyl-bonded silica gel (Ph) columns with linear solvation energy relationships (LSERs), a new multiple linear regression model using RP-HPLC retention parameters on ODS and CN columns as variables for estimation of soil adsorption coefficients was developed. It was tested on a set of reference substances from various chemical classes. The results showed that the multicolumn method was more promising than a single-column method was for the estimation of soil adsorption coefficients. The accuracy of the suggested model is identical with that of LSERs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, a novel sol-gel method is used to synthesize amorphous silica-alumina materials with a narrow mesoporous distribution and various Si/Al molar ratios without using any templates and pore-regulating agents. During the preparation procedure, only inexpensive inorganic salts were used as raw materials, instead of expensive and harmful alkoxides. The precursor sol was dried at room temperature in a vacuum box kept at 60 mmHg until it began to form the gel. The results of a nitrogen sorption experiment indicate that the synthesized materials with different Si/Al molar ratios have similar mesoporous distributions (within 2-12 nm). Moreover, it was found that the material's pore size distribution remains at a similar value during the heat treatment from room temperature to 550 degreesC. On the basis of the nitrogen sorption, TEM, and AFM characterization results, a formation mechanism of mesopores which accounts for the experimental data is also suggested. This suggested mechanism involves rearrangement of the primary particles during the drying process to form the precursors of the similarly sized mesopores. The synthesized materials were characterized by XRD, thermal analysis (TG/DTA), Al-27 and Si-29 MAS NMR spectroscopy, SEM, TEM, and AFM. The results of Al-27 and 29Si MAS NMR indicate that the distribution of silicon and aluminum in the synthesized materials is more uniform and homogeneous than that in the mixed oxides prepared via the traditional sol-gel method even at high alumina contents. The type and density of the acid sites were studied using pyridine adsorption-desorption FTIR spectroscopy. It was shown that the acidity of the synthesized materials is higher than that of the silica-alumina materials prepared by conventional methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An in-situ modified sol-gel method for the preparation of a Ni-based monolith-supported catalyst is reported. With the presence of a proper amount of plasticizer and binder, and at an optimized pH value, the stable boehmite sol was modified with metal ions (Ni, Li, La) successfully without distinct growth of the particle size. Monolith-supported Ni-based/gamma-Al2O3 catalysts were obtained using the modified sol as the coating medium with several cycles of dip-coating and calcination. Combined BET, SEM-EDS, XRD and H-2-TPR investigations demonstrated that the derived monolith catalysts had a high specific surface area, a relatively homogeneous surface composition, and a high extent of interaction between the active component and the support. These catalysts showed relatively stable catalytic activities for partial oxidation of methane (POM) to syngas under atmospheric pressure. The monolith catalysts prepared by this sol-gel method also demonstrated an improved resistance to sintering and loss of the active component during the reaction process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel sol-gel process for preparing oxides and mixed oxides sols from precipitation and peptization process is reported in this article. Inorganic salts are used as raw materials in this study. It is found that the amount of acid has great influence on the stability and particle diameter distribution of the precursor sols. Ultrasonic treatment is used to prepare alumina sol at room temperature. The result of Al-27 NMR shows that there exist Al-13(7+) species in the sol. By controlling the sol particles with narrow particle diameter distribution, alumina, titania and silica-alumina (SA) materials with narrow mesoporous distribution are formed by regular packing of sol particles during gelation without using any templates. The results also show that the structure and particle diameter distribution of precursor sol determine the final materials' texture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel hybrid organic-inorganic silica-based monolithic column possessing phenyl ligands for reversed-phase (RP) capillary electrochromatography (CEC) is described. The monolithic stationary phase was prepared by in situ co-condensation of tetraethoxysilane (TEOS) with phenyltriethoxysilane (PTES) via a two-step catalytic sol-gel procedure to introduce phenyl groups distributed throughout the silica matrix for chromatographic interaction. The hydrolysis and condensation reactions of precursors were chemically controlled through pH variation by adding hydrochloric acid and dodecylamine, respectively. The structural property of the monolithic column can be easily tailored through adjusting the composition of starting sol solution. The effect of PTES/TEOS ratios on the morphology of the created stationary phases was investigated. A variety of neutral and basic analytes were used to evaluate the column performance. The CEC columns exhibited typical RP chromatographic retention mechanism for neutral compounds and had improved peak shape for basic solutes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iron-substituted SBA-15 (Fe-SBA-15) materials have been synthesized via a simple direct hydrothermal method under weak acidic conditions. The powder X-ray diffraction (XRD), NZ sorption and transmission electron microscopy (TEM) characterizations show that the resultant materials have well-ordered hexagonal meso-structures. The diffused reflectance UV-vis and UV resonance Raman spectroscopy characterizations show that most of the iron ions exist as isolated framework species for calcined materials when the Fe/Si molar ratios are below 0.01 in the gel. The presence of iron species also has significant salt effects that can greatly improve the ordering of the mesoporous structure. Different iron species including isolated framework iron species, extraframework iron clusters and iron oxides are formed selectively by adjusting the pH values of the synthesis solutions and Fe/Si molar ratios. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A monolithic silica based strong cation-exchange stationary phase was successfully prepared for capillary electrochromatography. The monolithic silica matrix from a sol-gel process was chemically modified by treatment with 3-mercaptopropyltrimethoxysilane followed by a chemical oxidation procedure to produce the desired function. The strong cation-exchange stationary phase was characterized by its substantial and stable electroosmotic flow (EOF), and it was observed that the EOF value of the prepared column remained almost unchanged at different buffer pH values and slowly decreased with increasing phosphate concentration in the mobile phase. The monolithic silica column with strong cation-exchange stationary phase has been successfully employed in the electrochromatographic separation of beta-blockers and alkaloids extracted from traditional Chinese medicines (TCMs). The column efficiencies for the tested beta-blockers varied from 210,000 to 340,000 plates/m. A peak compression effect was observed for atenolol with the mobile phase having a low phosphate concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new post-grafting process, consisting of two steps of substrate preparation and sol - gel post-grafting, has been developed to prepare titanium-doped mesoporous SBA-15 material with a double-layered structure and locally concentrated titanium content at the inner pore surface. With this novel technique, the single phased and originally ordered mesostructures can be well conserved; in the conventional direct synthesis they can be partially damaged when the frameworks are doped with high content heteroatoms. Titanium species exist in an isolated, tetrahedral structure and are localized at the pore surface; this is beneficial to both reactant access and product release. Characterization with XRD, N-2 adsorption/desorption isotherms, HREM/ EDS, ICP, UV - Vis, and the newly developed UV - Raman spectroscopy confirm these results. Preliminary catalytic tests with the selective epoxidation of cyclohexene show good catalytic activity. Among them, sample TiSBA-15-10 with a Si : Ti molar ratio of 10 shows a TON value of 75 and a highest product ( epoxide) yield of 55%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanostructured materials are central to the evolution of future electronics and information technologies. Ferroelectrics have already been established as a dominant branch in the electronics sector because of their diverse application range such as ferroelectric memories, ferroelectric tunnel junctions, etc. The on-going dimensional downscaling of materials to allow packing of increased numbers of components onto integrated circuits provides the momentum for the evolution of nanostructured ferroelectric materials and devices. Nanoscaling of ferroelectric materials can result in a modification of their functionality, such as phase transition temperature or Curie temperature (TC), domain dynamics, dielectric constant, coercive field, spontaneous polarisation and piezoelectric response. Furthermore, nanoscaling can be used to form high density arrays of monodomain ferroelectric nanostructures, which is desirable for the miniaturisation of memory devices. This thesis details the use of various types of nanostructuring approaches to fabricate arrays of ferroelectric nanostructures, particularly non-oxide based systems. The introductory chapter reviews some exemplary research breakthroughs in the synthesis, characterisation and applications of nanoscale ferroelectric materials over the last decade, with priority given to novel synthetic strategies. Chapter 2 provides an overview of the experimental methods and characterisation tools used to produce and probe the properties of nanostructured antimony sulphide (Sb2S3), antimony sulpho iodide (SbSI) and lead titanate zirconate (PZT). In particular, Chapter 2 details the general principles of piezoresponse microscopy (PFM). Chapter 3 highlights the fabrication of arrays of Sb2S3 nanowires with variable diameters using newly developed solventless template-based approach. A detailed account of domain imaging and polarisation switching of these nanowire arrays is also provided. Chapter 4 details the preparation of vertically aligned arrays of SbSI nanorods and nanowires using a surface-roughness assisted vapour-phase deposition method. The qualitative and quantitative nanoscale ferroelectric properties of these nanostructures are also discussed. Chapter 5 highlights the fabrication of highly ordered arrays of PZT nanodots using block copolymer self-assembled templates and their ferroelectric characterisation using PFM. Chapter 6 summarises the conclusions drawn from the results reported in chapters 3, 4 and 5 and the future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with several aspects of the chemistry of iron compounds. The preparation (with particular emphasis on coprecipitation and sol-gel techniques) and processing of ferrites are discussed. Chapter 2 describes the synthesis of Ni-Zn ferrites with various compositions by three methods. These methods include coprecipitation and sol-gel techniques. The Ni-Zn ferrites were characterised by powder X-ray diffactometry (PXRD), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), Mössbauer spectroscopy and resistivity measurements. The results for the corresponding ferrites prepared by each method are compared. Chapter 3 reports the sol-gel preparation of a lead borosilicate glass and its addition to Ni-Zn ferrites prepared by the sol-gel method in Chapter 2. The glass-ferrites formed were analysed by the same techniques employed in Chapter 2. Alterations in the microstructure, magnetic and electronic properties of the ferrites due to glass addition are described. Chapter 4 introduces compounds containing Fe-O-B, Fe-O-Si or B-O-Si linkages. The synthesis and characterisation of compounds containing Fe-O-B units are described. The structure of [Fe(SALEN)]2O.CH2Cl2 (17), used in attempts to prepare compounds with Fe-O-Si bonds, was determined by X-ray crystallography. Chapter 4 also details the synthesis of three new borosilicate compounds containing ferrocenyl groups, i.e. [FcBO)2(OSiBut2)2] (19), [(FcBO)2(OSiPh2)2] (20) and [FcBOSiPh3] (21). The structure of (19) was determined by X-ray Crystallographic analysis. Chapter 5 reviews the intercalation properties of the layered host compound iron oxychloride (FeOCI). Intercalation compounds prepared with the microwave dielectric heating technique are also discussed. The syntheses of intercalation compounds by the microwave method with FeOCI as host and ferrocene, ferrocenylboronic acid and 4-aminopyridine as guest species are described. Characterisation of these compounds by powder X-ray diffractometry (PXRD) and M{ssbauer spectroscopy is reported. The attempted synthesis of an intercalation compound with the borosilicate compound (19) as guest species is discussed. Appendices A-E describe the theory and instrumentation involved in powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM0, vibrating sample magnetometry (VSM), Mössbauer spectroscopy and electrical resistivity measurements, respectively. Appendix F details the attempted syntheses of compounds with Fe-O-B and Fe-O-Si linkages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the summer of 1994, Archaeology in Annapolis conducted archaeological investigations of the city block bounded by Franklin, South and Cathedral Streets in the city of Annapolis. This Phase III excavation was conducted as a means to identify subsurface cultural resources in the impact area associated with the proposed construction of the Anne Arundel County Courthouse addition. This impact area included both the upper and lower parking lots used by Courthouse employees. Investigations were conducted in the form of mechanical trenching and hand excavated units. Excavations in the upper lot area yielded significant information concerning the interior area of the block. Known as Bellis Court, this series of rowhouses was constructed in the late nineteenth century and was used as rental properties by African-Americans. The dwellings remained until the middle of the twentieth century when they were demolished in preparation for the construction of a Courthouse addition. Portions of the foundation of a house owned by William H. Bellis in the 1870s were also exposed in this area. Construction of this house was begun by William Nicholson around 1730 and completed by Daniel Dulany in 1732/33. It was demolished in 1896 by James Munroe, a Trustee for Bellis. Excavations in the upper lot also revealed the remains of a late seventeenth/early eighteenth century wood-lined cellar, believed to be part of the earliest known structure on Lot 58. After an initially rapid deposition of fill around 1828, this cellar was gradually covered with soil throughout the remainder of the nineteenth century. The fill deposit in the cellar feature yielded a mixed assemblage of artifacts that included sherds of early materials such as North Devon gravel-tempered earthenware, North Devon sgraffito and Northem Italian slipware, along with creamware, pearlware and whiteware. In the lower parking lot, numerous artifacts were recovered from yard scatter associated with the houses that at one time fronted along Cathedral Street and were occupied by African- Americans. An assemblage of late seventeenth century/early eighteenth century materials and several slag deposits from an early forge were recovered from this second area of study. The materials associated with the forge, including portions of a crucible, provided evidence of some of the earliest industry in Annapolis. Investigations in both the upper and lower parking lots added to the knowledge of the changing landscape within the project area, including a prevalence of open space in early periods, a surprising survival of impermanent structures, and a gradual regrading and filling of the block with houses and interior courts. Excavations at the Anne Arundel County Courthouse proved this to be a multi-component site, rich in cultural resources from Annapolis' Early Settlement Period through its Modern Period (as specified by Maryland's Comprehensive Historic Preservation Plan (Weissman 1986)). This report provides detailed interpretations of the archaeological findings of these Phase III investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(ethylene oxide) (PEO) is one of the most researched synthetic polymers due to the complex behavior which arises from the interplay of the hydrophilic and hydrophobic sites on the polymer chain. PEO in ethanol forms an opaque gel-like mixture with a partially crystalline structure. Addition of a small amount of water disrupts the gel: 5 wt % PEO in ethanol becomes a transparent solution with the addition of 4 vol % water. The phase behavior of PEO in mixed solvents have been studied using small-angle neutron scattering (SANS). PEO solutions (5 wt % PEO) which contain 4 vol % - 10 vol % (and higher) water behave as an athermal polymer solution and the phase behavior changes from UCST to LCST rapidly as the fraction of water is increased. 2 wt % PEO in water and 10 wt % PEO in ethanol/ water mixtures are examined to assess the role of hydration. The observed phase behavior is consistent with a hydration layer forming upon the addition of water as the system shifts from UCST to LCST behavior. At the molecular level, two or three water molecules can hydrate one PEO monomer (water molecules form a sheath around the PEO macromolecule) which is consistent with the suppression of crystallization and change in the mentioned phase behavior as observed by SANS. The clustering effect of aqueous PEO solution (M.W of PEO = 90,000 g/mol) is monitored as an excess scattering intensity at low-Q. Clustering intensity at Q = 0.004 Å^-1 is used for evaluating the clustering effect. The clustering intensity is proportional to the inverse temperature and levels off when the temperature is less than 50 ˚C. When the temperature is increased over 50 ˚C, the clustering intensity starts decreasing. The clustering of PEO is monitored in ethanol/ water mixtures. The clustering intensity increases as the fraction of water is increased. Based on the solvation intensity behavior, we confirmed that the ethanol/ water mixtures obey a random solvent mixing rule, whereby solvent mixtures are better at solvating the polymer that any of the two solvents. The solution behavior of PEO in ethanol was investigated in the presence of salt (CaCl2) using SANS. Binding of Ca2+ ions to the PEO oxygens transforms the neutral polymer to a weakly charged polyelectrolyte. We observed that the PEO/ethanol solution is better solvated at higher salt concentration due to the electrostatic repulsion of weakly charged monomers. The association of the Ca2+ ions with the PEO oxygen atoms transforms the neutral polymer to a weakly charged polyelectrolyte and gives rise to repulsive interactions between the PEO/Ca2+ complexes. Addition of salt disrupts the gel, which is consistent with better solvation as the salt concentration is increased. Moreover, SANS shows that the phase behavior of PEO/ethanol changes from UCST to LCST as the salt concentration is increased.