899 resultados para Fuzzy set
Resumo:
We consider a convex problem of Semi-Infinite Programming (SIP) with multidimensional index set. In study of this problem we apply the approach suggested in [20] for convex SIP problems with one-dimensional index sets and based on the notions of immobile indices and their immobility orders. For the problem under consideration we formulate optimality conditions that are explicit and have the form of criterion. We compare this criterion with other known optimality conditions for SIP and show its efficiency in the convex case.
Resumo:
Semi-autonomous avatars should be both realistic and believable. The goal is to learn from and reproduce the behaviours of the user-controlled input to enable semi-autonomous avatars to plausibly interact with their human-controlled counterparts. A powerful tool for embedding autonomous behaviour is learning by imitation. Hence, in this paper an ensemble of fuzzy inference systems cluster the user input data to identify natural groupings within the data to describe the users movement and actions in a more abstract way. Multiple clustering algorithms are investigated along with a neuro-fuzzy classifier; and an ensemble of fuzzy systems are evaluated.
Resumo:
In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.
Resumo:
The design of neuro-fuzzy models is still a complex problem, as it involves not only the determination of the model parameters, but also its structure. Of special importance is the incorporation of a priori information in the design process. In this paper two known design algorithms for B-spline models will be updated to account for function and derivatives equality restrictions, which are important when the neural model is used for performing single or multi-objective optimization on-line.
Resumo:
In modern measurement and control systems, the available time and resources are often not only limited, but could change during the operation of the system. In these cases, the so-called anytime algorithms could be used advantageously. While diflerent soft computing methods are wide-spreadly used in system modeling, their usability in these cases are limited.
Resumo:
Complete supervised training algorithms for B-spline neural networks and fuzzy rule-based systems are discussed. By interducing the relationship between B-spline neural networks and certain types of fuzzy models, training algorithms developed initially for neural networks can be adapted by fuzzy systems.
Resumo:
The normal design process for neural networks or fuzzy systems involve two different phases: the determination of the best topology, which can be seen as a system identification problem, and the determination of its parameters, which can be envisaged as a parameter estimation problem. This latter issue, the determination of the model parameters (linear weights and interior knots) is the simplest task and is usually solved using gradient or hybrid schemes. The former issue, the topology determination, is an extremely complex task, especially if dealing with real-world problems.
Resumo:
Several alternative approaches have been discussed: Levenberg-Marquardt - no satisfactory convergence speed + local minimum, Bacterial algorithm - problems with large dimensionality (speed), Clustering - no safe criterion for number of clusters + dimentionality problem.
Resumo:
One of the crucial problems of fuzzy rule modeling is how to find an optimal or at least a quasi-optimal rule base fro a certain system. In most applications there is no human expert available, or, the result of a human expert's decision is too much subjective and is not reproducible, thus some automatic method to determine the fuzzy rule base must be deployed.
Resumo:
All systems found in nature exhibit, with different degrees, a nonlinear behavior. To emulate this behavior, classical systems identification techniques use, typically, linear models, for mathematical simplicity. Models inspired by biological principles (artificial neural networks) and linguistically motivated (fuzzy systems), due to their universal approximation property, are becoming alternatives to classical mathematical models. In systems identification, the design of this type of models is an iterative process, requiring, among other steps, the need to identify the model structure, as well as the estimation of the model parameters. This thesis addresses the applicability of gradient-basis algorithms for the parameter estimation phase, and the use of evolutionary algorithms for model structure selection, for the design of neuro-fuzzy systems, i.e., models that offer the transparency property found in fuzzy systems, but use, for their design, algorithms introduced in the context of neural networks. A new methodology, based on the minimization of the integral of the error, and exploiting the parameter separability property typically found in neuro-fuzzy systems, is proposed for parameter estimation. A recent evolutionary technique (bacterial algorithms), based on the natural phenomenon of microbial evolution, is combined with genetic programming, and the resulting algorithm, bacterial programming, advocated for structure determination. Different versions of this evolutionary technique are combined with gradient-based algorithms, solving problems found in fuzzy and neuro-fuzzy design, namely incorporation of a-priori knowledge, gradient algorithms initialization and model complexity reduction.
Resumo:
We introduce a quality controlled observational atmospheric, snow, and soil data set from Snoqualmie Pass, Washington, U.S.A., to enable testing of hydrometeorological and snow process representations within a rain-snow transitional climate where existing observations are sparse and limited. Continuous meteorological forcing (including air temperature, total precipitation, wind speed, specific humidity, air pressure, short- and longwave irradiance) are provided at hourly intervals for a 24-year historical period (water years 1989-2012) and at half-hourly intervals for a more-recent period (water years 2013-2015), separated based on the availability of observations. Additional observations include 40-years of snow board new snow accumulation, multiple measurements of total snow depth, and manual snow pits, while more recent years include sub-daily surface temperature, snowpack drainage, soil moisture and temperature profiles, and eddy co-variance derived turbulent heat flux. This data set is ideal for testing hypotheses about energy balance, soil and snow processes in the rain-snow transition zone. Plots of live data can be found here: http://depts.washington.edu/mtnhydr/cgi/plot.cgi
Resumo:
Chinese media in the context of China's rise have puzzled many scholars who used to understand media and communications phenomena by employing the theories generated from a few affluent Western democracies, notably the US. As a result, a complex but more accurate picture has been ignored. Under numerous theoretical polarizations, the contemporary social world seems little changed but polarized. This thesis aims to propose a different approach endeavoring to 'de-Westernize' or 'internationalize' media and communications studies. As a starting point, this study focuses on the globalization debate, Chinese media and news agency studies. The thesis has investigated the Chinese news agency, Xinhua, by employing Fuzzy Logic which captures the complexity of the change in the agency's business structure and journalistic practices over last 25 years. The change is also examined by scrutinizing the role of journalists in the interrelations of Xinhua with its news sources, media and nonmedia clients, and other news agencies. A combination of archive study and 94 semistructured interviews conducted in Beijing, Shanghai, Guangzhou, Hong Kong, Macau and London provides an inclusive account of the Chinese news institution. The key research findings drawn from the empirical research into Xinhua have justified the central argument of this thesis: Crisp Logic or the 'either/or' approach has failed to explain the dynamics of the change to the media system based in a 'non-Western' society. The numerous theoretical polarizations generated by Crisp Logic to a large extent have distorted the understanding of the contemporary social world by polarizing it. Fuzzy Logic serves better(though it is not the only choice)than the traditional approach to reflect on the set of variables existing between the two poles created by Crisp Logic. This thesis is the first doctorate research in the UK and other English-speaking countries to investigate Xinhua by 'going inside' the news institution's headquarters, local branches and overseas bureaus. This is the first comprehensive academic study of the agency, which not only examines the agency's recent change in business structure and journalistic practices, but also provides a historical account of the agency and its relationship with other social institutions. This is the first media study that employs Fuzzy Logic to understand the globalization theory, Chinese media and news agencies.
Resumo:
Thesis (Master's)--University of Washington, 2015