992 resultados para Function space
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
The Na,K-ATPase is a major ion-motive ATPase of the P-type family responsible for many aspects of cellular homeostasis. To determine the structure of the pathway for cations across the transmembrane portion of the Na,K-ATPase, we mutated 24 residues of the fourth transmembrane segment into cysteine and studied their function and accessibility by exposure to the sulfhydryl reagent 2-aminoethyl-methanethiosulfonate. Accessibility was also examined after treatment with palytoxin, which transforms the Na,K-pump into a cation channel. Of the 24 tested cysteine mutants, seven had no or a much reduced transport function. In particular cysteine mutants of the highly conserved "PEG" motif had a strongly reduced activity. However, most of the non-functional mutants could still be transformed by palytoxin as well as all of the functional mutants. Accessibility, determined as a 2-aminoethyl-methanethiosulfonate-induced reduction of the transport activity or as inhibition of the membrane conductance after palytoxin treatment, was observed for the following positions: Phe(323), Ile(322), Gly(326), Ala(330), Pro(333), Glu(334), and Gly(335). In accordance with a structural model of the Na,K-ATPase obtained by homology modeling with the two published structures of sarcoplasmic and endoplasmic reticulum calcium ATPase (Protein Data Bank codes 1EUL and 1IWO), the results suggest the presence of a cation pathway along the side of the fourth transmembrane segment that faces the space between transmembrane segments 5 and 6. The phenylalanine residue in position 323 has a critical position at the outer mouth of the cation pathway. The residues thought to form the cation binding site II ((333)PEGL) are also part of the accessible wall of the cation pathway opened by palytoxin through the Na,K-pump.
Resumo:
Lymphocytes regulate their responsiveness to IL-2 through the transcriptional control of the IL-2R alpha gene, which encodes a component of the high affinity IL-2 receptor. In the mouse IL-2R alpha gene this control is exerted via two regulatable elements, a promoter proximal region, and an IL-2-responsive enhancer (IL-2rE) 1.3 kb upstream. In vitro and in vivo functional analysis of the IL-2rE in the rodent thymic lymphoma-derived, CD4- CD8- cell line PC60 demonstrated that three separate elements, sites I, II, and III, were necessary for IL-2 responsiveness; these three sites demonstrate functional cooperation. Site III contains a consensus binding motif for members of the Ets family of transcription factors. Here we demonstrate that Elf-1, an Ets-like protein, binds to site III and participates in IL-2 responsiveness. In vitro site III forms a complex with a protein constitutively present in nuclear extracts from PC60 cells as well as from normal CD4- CD8- thymocytes. We have identified this molecule as Elf-1 according to a number of criteria. The complex possesses an identical electrophoretic mobility to that formed by recombinant Elf-1 protein and is super-shifted by anti-Elf-1 antibodies. Biotinylated IL-2rE probes precipitate Elf-1 from PC60 extracts provided site III is intact and both recombinant and PC60-derived proteins bind with the same relative affinities to different mutants of site III. In addition, by introducing mutations into the core of the site III Ets-like motif and comparing the corresponding effects on the in vitro binding of Elf-1 and the in vivo IL-2rE activity, we provide strong evidence that Elf-1 is directly involved in IL-2 responsiveness. The nature of the functional cooperativity observed between Elf-1 and the factors binding sites I and II remains unresolved; experiments presented here however suggest that this effect may not require direct interactions between the proteins binding these three elements.
Resumo:
Résumé Identification, localisation et activation des cellules souches hématopoiétiques dormantes in vivo Les cellules souches somatiques sont présentes dans la majorité des tissus régénératifs comme la peau, l'épithélium intestinal et le système hématopoiétique. A partir d'une seule cellule, elles ont les capacités de produire d'autres cellules souches du même type (auto-renouvellement) et d'engendrer un ensemble défini de cellules progénitrices différenciées qui vont maintenir ou réparer leur tissu hôte. Les cellules souches adultes les mieux caractérisées sont les cellules souches hématopoiétiques (HSC), localisées dans la moelle osseuse. Un des buts de mon travail de doctorat était de caractériser plus en profondeur la localisation des HSCs endogènes in vivo. Pour ce faire, la technique "label retaining assay", se basant sur la division peu fréquentes et sur la dormance des cellules souches, a été utilisée. Après un marquage des souris avec du BrdU (analogue à l'ADN) suivi d'une longue période sans BrdU, les cellules ayant incorporés le marquage ("label retaining cells" LCRs) ont pu être identifiées dans la moelle osseuse. Ces cellules LCRs étaient enrichies 300 fois en cellules de phenotype HSC et, en utilisant de la cytofluorométrie, il a pu être montré qu'environ 15% de toutes les HSCs d'une souris restent dormantes durant plusieures semaines. Ces HSCs dormantes à long terme ne sont probablement pas impliquées dans la maintenance de 'hématopoièse. Par contre, on assiste à l'activation rapide de ces HSCs dormantes lors d'une blessure, comme une ablation myéloide. Elles re-entrent alors en cycle cellulaire et sont essentielles pour une génération rapide des cellules progénitrices et matures qui vont remplacer les cellules perdues. De plus, la détection des LCRs, combinée avec l'utilisation du marqueur de HSCs c-kit, peut être utilisée pour la localisation des HSCs dormantes présentes dans la paroi endostéale de la cavité osseuse. De manière surprenante, les LCRs c-kit+ ont surtout étés trouvées isolées en cellule unique, suggérant que le micro-environement spécifique entourant et maintenant les HSCs, appelé niche, pourrait être très réduit et abriter une seule HSC par niche. Rôles complexes du gène supresseur de tumeur Pten dans le système hématopoiétique La phosphatase PTEN disparaît dans certains cancers héréditaires ou sporadiques humains, comme les gliomes, les cancers de l'utérus ou du sein. Pten inhibe la voie de signalisation de la PI3-kinase et joue un rôle clé dans l'apoptose, la croissance, la prolifération et la migration cellulaire. Notre but était d'étudier le rôle de Pten dans les HSC normale et durant la formation de leucémies. Pour ce faire, nous avons généré un modèle murin dans lequel le gène Pten peut être supprimé dans les cellules hématopoiétiques, incluant les HSCs. Ceci a été possible en croissant l'allèle conditionnelle ptenflox soit avec le transgène MxCre inductible par l'interféron α soit avec le transgène Scl-CreERt inductible par le tamoxifen. Ceci permet la conversion de l'allèle ptenflox en l'allèle nul PtenΔ dans les HSCs et les autres types cellulaires hématopoiétiques. Les souris mutantes Pten développent une splénomégalie massive causée par une expansion dramatiques de toutes les cellules myéloides. De manière interessante, alors que le nombre de HSCs dans la moelle osseuse diminue progressivement, le nombre des HSCs dans la rate augmente de manière proportionnelle. Etrangement, les analyses de cycle cellulaire ont montrés que Pten n'avait que peu ou pas d'effet sur la dormance des HSCs ou sur leur autorenouvellement. En revanche, une augmentation massive du niveau de la cytokine de mobilisation G-CSF a été détéctée dans le serum sanguin, suggérant que la suppression de Pten stimulerait la mobilisation et la migration des HSC de la moelle osseuse vers la rate. Finallement, la transplantation de moelle osseuse délétée en Pten dans des souris immuno-déficientes montre que Pten fonctionnerait comme un suppresseur de tumeur dans le système hématopoiétique car son absence entraîne la formation rapide de leucémies lymphocytaires. Summary Identification, localization and activation of dormant hematopoietic stun cells in vivo Somatic stem cells are present in most self-renewing tissues including the skin, the intestinal epithelium and the hematopoietic system. On a single cell basis they have the capacity to produce more stem cells of the same phenotype (self-renewal) and to give rise to a defined set of mature differentiated progeny, responsible for the maintenance or repair of the host tissue. The best characterized adult stem cell is the hematopoietic stem cell (HSC) located in the bone marrow. One goal of my thesis work was to further characterize the location of endogenous HSCs in vivo. To do this, a technique called "label retaining assay» was used which takes advantage of the fact that stem cells (including HSCs) divide very infrequently and can be dormant for months. After labeling mice with the DNA analogue BrdU followed by a long BrdU free "chase", BrdU "label retaining cells" (CRCs) could be identified in the bone marrow. These CRCs were 300-fold enriched for phenotypic HSCs and by using flow cytometry analysis it could be shown that about 15% of all HSCs in the mouse are dormant for many weeks. Our results suggest that these long-term dormant HSCs are unlikely to be involved in homeostatic maintenance. However they are rapidly activated and reenter the cell cycle in response to injury signals such as myeloid ablation. In addition, detection of LRCs in combination with the HSC marker c-Kit could be used to locate engrafted dormant HSCs close to the endosteal lining of the bone marrow cavities. Most surprisingly, c-Kit+LRCs were found predominantly as single cells suggesting that the specific stem cell maintaining microenvironment, called niche, has limited space and may house only single HSCs. Complex roles of the tumor suppressor gene Pten in the hematopoietic system. The phosphatase PTEN is lost in hereditary and sporadic forms of human cancers, including gliomas, endometrial and breast cancers. Pten inhibits the PI3-kina.se pathway and plays a key role in apoptosis, cell growth, proliferation and migration. Our aim was to study the role of Pten in normal HSCs and during leukemia formation. To do this, we generated a mouse model in which the Pten gene can be deleted in hematopoietic cells including HSCs. This was achieved by crossing the conditional ptenflox allele with either the interferona inducible MxCre or the tamoxifen inducible Scl-CreERT transgene. This allowed the conversion of the ptenflox allele into a pterr' null allele in HSCs and other hematopoietic cell types. As a result Pten mutant mice developed massive splenomegaly due to a dramatic expansion of all myeloid cells. Interestingly, while the number of bone marrow HSCs progressively decreased, the number of HSCs in the spleen increased to a similar extent. Unexpectedly, extensive cell cycle analysis showed that Pten had little or no effect on HSC dormancy or HSC self-renewal. Instead, dramatically increased levels of the mobilizing cytokine G-CSF were detected in the blood serum suggesting that loss-of Pten stimulates mobilization and migration of HSC from the BM to the spleen. Finally, transplantation of Pten deficient BM cells into immuno-compromised mice showed that Pten can function as a tumor suppressor in the hematopoietic system and that its absence leads to the rapid formation of T cell leukemia.
Resumo:
Pancreatic β-cells play a central role in glucose homeostasis by tightly regulating insulin release according to the organism's demand. Impairment of β-cell function due to hostile environment, such as hyperglycaemia and hyperlipidaemia, or due to autoimmune destruction of β-cells, results in diabetes onset. Both environmental factors and genetic predisposition are known to be involved in the development of the disease, but the exact mechanisms leading to β-cell dysfunction and death remain to be characterized. Non-coding RNA molecules, such as microRNAs (miRNAs), have been suggested to be necessary for proper β-cell development and function. The present review aims at summarizing the most recent findings about the role of non-coding RNAs in the control of β-cell functions and their involvement in diabetes. We will also provide a perspective view of the future research directions in the field of non-coding RNAs. In particular, we will discuss the implications for diabetes research of the discovery of a new communication mechanism based on cell-to-cell miRNA transfer. Moreover, we will highlight the emerging interconnections between miRNAs and epigenetics and the possible role of long non-coding RNAs in the control of β-cell activities.
Resumo:
Brain deformations induced by space-occupying lesions may result in unpredictable position and shape of functionally important brain structures. The aim of this study is to propose a method for segmentation of brain structures by deformation of a segmented brain atlas in presence of a space-occupying lesion. Our approach is based on an a priori model of lesion growth (MLG) that assumes radial expansion from a seeding point and involves three steps: first, an affine registration bringing the atlas and the patient into global correspondence; then, the seeding of a synthetic tumor into the brain atlas providing a template for the lesion; finally, the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. The method was applied on two meningiomas inducing a pure displacement of the underlying brain structures, and segmentation accuracy of ventricles and basal ganglia was assessed. Results show that the segmented structures were consistent with the patient's anatomy and that the deformation accuracy of surrounding brain structures was highly dependent on the accurate placement of the tumor seeding point. Further improvements of the method will optimize the segmentation accuracy. Visualization of brain structures provides useful information for therapeutic consideration of space-occupying lesions, including surgical, radiosurgical, and radiotherapeutic planning, in order to increase treatment efficiency and prevent neurological damage.
Resumo:
The aim of this study was to evaluate the effect of ovariectomy on the acute-phase response of inflammatory stress. Ex vivo adrenocortical, peripheral mononuclear cell (PMNC) and adipocyte activities were studied in intact and ovariectomized mice. Endotoxemia was mimicked by intraperitoneal administration of bacterial lipopolysaccharide (LPS; 25 mg per mouse) to sham-operated and 21-day ovariectomized mice. Circulating corticosterone, tumor necrosis factor-alpha (TNFalpha) and leptin concentrations were monitored before and 30-120 min after the administration of LPS. Additionally, in vitro experiments were performed with isolated corticoadrenal cells, PMNCs and omental adipocytes from sham-operated and ovariectomized mice incubated with specific secretagogues. The results indicate that while ovariectomy enhanced TNFalpha secretion after in vivo administration of LPS, it reduced corticoadrenal response and abrogated LPS-elicited leptin secretion into the circulation. While the corticoadrenal sensitivity to ACTH stimulation was reduced by ovariectomy, the LPS-induced PMNC response was not affected. Exogenous leptin enhanced baseline PMNC function regardless of surgery. Finally, ovariectomy drastically reduced in vitro adipocyte functionality. Our data support the notion that ovariectomy modified neuroendocrine-immune-adipocyte axis function and strongly suggest that ovarian activity could play a pivotal role in the development of an adequate immune defense mechanism after injury.
Resumo:
Upon infection with the protozoan parasite Leishmania major, susceptible BALB/c mice develop unhealing lesions associated with the maturation of CD4(+)Th2 cells secreting IL-4. In contrast, resistant C57BL/6 mice heal their lesions, because of expansion and secretion of IFN-gamma of CD4(+) Th1 cells. The Fas-FasL pathway, although not involved in Th cell differentiation, was reported to be necessary for complete resolution of lesions. We investigate here the role of IFN-gamma and IL-4 on Fas-FasL nonapoptotic signaling events leading to the modulation of macrophage activation. We show that addition of FasL and IFN-gamma to BMMø led to their increased activation, as reflected by enhanced secretion of TNF, IL-6, NO, and the induction of their microbicidal activity, resulting in the killing of intracellular L. major. In contrast, the presence of IL-4 decreased the synergy of IFN-gamma/FasL significantly on macrophage activation and the killing of intracellular L. major. These results show that FasL synergizes with IFN-gamma to activate macrophages and that the tight regulation by IFN-gamma and/or IL-4 of the nonapoptotic signaling events triggered by the Fas-FasL pathway affects significantly the activation of macrophages to a microbicidal state and may thus contribute to the pathogenesis of L. major infection.
Resumo:
During their complex life cycle schistosomes alternate between the use of stored glycogen and reliance on host glucose to provide for their energy needs. In addition, there is dramatic variation between the relative contribution of aerobic versus anaerobic glucose metabolism during development. We have cloned a set of representative cDNAs that encode proteins involved in glucose uptake, glycolysis, Kreb's cycle and oxidative phosphorylation. The different cDNAs were used as probes to examine the expression of glucose metabolism genes during the schistosome life cycle. Steady state mRNA levels from whole cercariae, isolated cercarial tails, schistosomula and adult worms were analysed on Northern blots and dot blots which were quantified using storage phosphor technology. These studies reveal: (1) Transcripts encoding glycogen metabolic enzymes are expressed to much higher levels in cercarial tails than whole cercariae or schistosomula while the opposite pattern is found for glucose transporters and hexokinase transcripts; (2) Schistosomula contain low levels of transcripts encoding respiratory enzymes but regain the capacity for aerobic glucose metabolism as they mature to adulthood; (3) Male and female adults contain similar levels of the different transcripts involved in glucose metabolism.
Resumo:
Background: Experimental data have suggested that adoptive transfer of CD4+CD25+Foxp3+ regulatory T cells (Tregs), capable of controlling immune responses to specifi c auto- or alloantigens, could be used as a therapeutic strategy to promote specifi c tolerance in T-cell mediated diseases and in organ transplantation (Tx). However, before advocating the application of immunotherapy with Tregs in Tx, we need to improve our understanding of their in vivo homeostasis, traffi cking pattern and effector function in response to alloantigens. Methods : Donor-antigen specifi c murine Tregs were generated and characterized in vitro following our described protocols. Using an adoptive transfer and skin allotransplantation model, we have analyzed the in vivo expansion and homing of fl uorescent-labeled effector T cells (Teff) and Tregs, at different time-points after Tx, using fl ow-cytometry as well as fl uorescence microscopy techniques. Results: Tregs expressed CD62L, CCR7 and CD103 allowing their homing into lymphoid and non-lymphoid tissues (gut, skin) after intravenous injection. While hyporesponsive to TCR stimulation in vitro, transferred Tregs survived, migrated to secondary lymphoid organs and preferentially expanded within the allograft draining lymph nodes. Furthermore, Foxp3+ cells could be detected inside the allograft as early as day 3-5 after Tx. At a much later time-point (day 60 after Tx), graft-infi ltrating Foxp3+ cells were also detectable in tolerant recipients. When transferred alone, CD4+CD25- Teff cells expanded within secondary lymphoid organs and infi ltrated the allograft by day 3-5 after Tx. The co-transfer of Tregs limited the expansion of alloreactive Teff cells as well as their recruitment into the allograft. The promotion of graft survival observed in the presence of Tregs was in part mediated by the inhibition of the production of effector cytokines by CD4+CD25- T cells. Conclusion: Taken together, our results suggest that the suppression of allograft rejection and the induction of Tx tolerance are in part dependant on the alloantigendriven homing and expansion of Tregs. Thus, the appropriate localization of Tregs may be critical for their suppressive function in vivo.
Resumo:
PURPOSE: Tumor-associated TIE-2-expressing monocytes (TEM) are highly proangiogenic cells critical for tumor vascularization. We previously showed that, in human breast cancer, TIE-2 and VEGFR pathways control proangiogenic activity of TEMs. Here, we examine the contribution of these pathways to immunosuppressive activity of TEMs. EXPERIMENTAL DESIGN: We investigated the changes in immunosuppressive activity of TEMs and gene expression in response to specific kinase inhibitors of TIE-2 and VEGFR. The ability of tumor TEMs to suppress tumor-specific T-cell response mediated by tumor dendritic cells (DC) was measured in vitro. Characterization of TEM and DC phenotype in addition to their interaction with T cells was done using confocal microscopic images analysis of breast carcinomas. RESULTS: TEMs from breast tumors are able to suppress tumor-specific immune responses. Importantly, proangiogenic and suppressive functions of TEMs are similarly driven by TIE-2 and VEGFR kinase activity. Furthermore, we show that tumor TEMs can function as antigen-presenting cells and elicit a weak proliferation of T cells. Blocking TIE-2 and VEGFR kinase activity induced TEMs to change their phenotype into cells with features of myeloid dendritic cells. We show that immunosuppressive activity of TEMs is associated with high CD86 surface expression and extensive engagement of T regulatory cells in breast tumors. TIE-2 and VEGFR kinase activity was also necessary to maintain high CD86 surface expression levels and to convert T cells into regulatory cells. CONCLUSIONS: These results suggest that TEMs are plastic cells that can be reverted from suppressive, proangiogenic cells into cells that are able to mediate an antitumoral immune response. Clin Cancer Res; 19(13); 3439-49. ©2013 AACR.
Resumo:
OBJECTIVEEvaluate whether healthy or diabetic adult mice can tolerate an extreme loss of pancreatic α-cells and how this sudden massive depletion affects β-cell function and blood glucose homeostasis.RESEARCH DESIGN AND METHODSWe generated a new transgenic model allowing near-total α-cell removal specifically in adult mice. Massive α-cell ablation was triggered in normally grown and healthy adult animals upon diphtheria toxin (DT) administration. The metabolic status of these mice was assessed in 1) physiologic conditions, 2) a situation requiring glucagon action, and 3) after β-cell loss.RESULTSAdult transgenic mice enduring extreme (98%) α-cell removal remained healthy and did not display major defects in insulin counter-regulatory response. We observed that 2% of the normal α-cell mass produced enough glucagon to ensure near-normal glucagonemia. β-Cell function and blood glucose homeostasis remained unaltered after α-cell loss, indicating that direct local intraislet signaling between α- and β-cells is dispensable. Escaping α-cells increased their glucagon content during subsequent months, but there was no significant α-cell regeneration. Near-total α-cell ablation did not prevent hyperglycemia in mice having also undergone massive β-cell loss, indicating that a minimal amount of α-cells can still guarantee normal glucagon signaling in diabetic conditions.CONCLUSIONSAn extremely low amount of α-cells is sufficient to prevent a major counter-regulatory deregulation, both under physiologic and diabetic conditions. We previously reported that α-cells reprogram to insulin production after extreme β-cell loss and now conjecture that the low α-cell requirement could be exploited in future diabetic therapies aimed at regenerating β-cells by reprogramming adult α-cells.
Resumo:
BACKGROUND: Intracoronary injection of autologous bone marrow-derived mononucleated cells (BM-MNC) may improve LV function shortly after acute ST elevation myocardial infarction (STEMI), but little is known about the long-term durability of the treatment effect. METHODS: In a single-centre trial a total of 60 patients with acute anterior STEMI, successful reperfusion therapy and a left ventricular ejection fraction (LVEF) of <50% were screened for the study. 23 patients were actively treated with intracoronary infusion of BM-MNC within a median of 3 days. The open-label control group consisted of 19 patients who did not consent to undergo BM-MNC treatment but agreed to undergo regular clinical and echocardiographic follow-up for up to 5 years after AMI. RESULTS: Whereas at 4 months there was no significant difference between the increase in LVEF in the BM-MNC group and the control group (+7.0%, 95%CI 3.6; 10.4) vs. +3.9%, 95%CI -2.1; 10), the absolute increase at 5 years remained stable in the BM-MNC but not in the control group (+7.95%, 95%CI 3.5; 12.4 vs. -0.5%, 95%CI -5.4; 4.4; p for interaction between groups = 0.035). DISCUSSION: In this single-centre, open-labelled study, intracoronary administration of BM-MNC is feasible and safe in the short term. It is also associated with sustained improvement of left ventricular function in patients with acute myocardial infarction, encouraging phase III studies to examine the potential BM-MNC effect on clinical outcome.
Resumo:
The Onecut homeodomain transcription factor hepatic nuclear factor 6 (Hnf6) is necessary for proper development of islet beta-cells. Hnf6 is initially expressed throughout the pancreatic epithelium but is downregulated in endocrine cells at late gestation and is not expressed in postnatal islets. Transgenic mice in which Hnf6 expression is maintained in postnatal islets (pdx1(PB)Hnf6) show overt diabetes and impaired glucose-stimulated insulin secretion (GSIS) at weaning. We now define the mechanism whereby maintenance of Hnf6 expression postnatally leads to beta-cell dysfunction. We provide evidence that continued expression of Hnf6 impairs GSIS by altering insulin granule biosynthesis, resulting in a reduced response to secretagogues. Sustained expression of Hnf6 also results in downregulation of the beta-cell-specific transcription factor MafA and a decrease in total pancreatic insulin. These results suggest that downregulation of Hnf6 expression in beta-cells during development is essential to achieve a mature, glucose-responsive beta-cell.
Resumo:
Hem establert les bases metodològiques i teòriques per investigar la pregunta “Tenen les nacions sense estat el dret de controlar el seu propi espai de comunicació?”. La investigació ajusta el concepte d’espai de comunicació a la teoria política, cercant els seus límits en els drets individuals i, des de la perspectiva del liberalisme 2, aportant la justificació del seu control en quant que plataforma que incideix en la conservació i supervivència d’una cultura nacional. El primer article i fase de la tesi és l’adaptació i definició del concepte espai de comunicació. Fins ara, la recerca ha proposat diferents models d’espai de comunicació entenent si es tracta d’una visió emfatitzant la distribució i la producció de material marcat amb els símbols de la identitat nacional de la societat emissora, o bé si emfatitza la idea d’un espai de circulació de fluxos comunicatiu ajustat a un territori tradicionalment vinculat a una identitat nacional o nació sense estat. Igualment, es distingeix la dimensió d’emissió –sortir del territori al món- i la de recepció –fluxos informatius rebuts des del món al territori, concretament, al ciutadà; el paper d’intervenció de les institucions democràtiques és diferent en una dimensió o una altra i, per tant, també són diferents els drets afectats i les teories o principis que neguen o justifiquen el control de l’espai de comunicació. També s’ha indagat en les teories sobre els efectes cognitius dels mitjans de comunicació per relacionar-los amb la construcció nacional com a cohesió simbòlica i cultural. Si bé els mitjans no poden fer canviar de pensament immediatament, sí que poden conformar a llarg termini una percepció nacional general. Una comunitat és imaginada, donada la distància física dels seus components, i la comunicació social és, juntament amb l’educació, el principal factor de construcció nacional, avui en dia.