972 resultados para Fertilization (15N)
Resumo:
The exchange of histones with protamines in sperm DNA results in sperm chromatin compaction and protection. Variations in sperm protamine expression are associated with male infertility. The aim of this study was to investigate relationships between DNA fragmentation, sperm protamines and assisted reproduction treatment. Semen and spermatozoa prepared by density-gradient centrifugation (DGC) from 73 men undergoing IVF and 24 men undergoing intracytoplasmic sperm injection (ICSI) were included in the study. Nuclear DNA fragmentation was assessed using the alkaline Comet assay and protamines were separated by acid-urea polyacrylamide gels. Sperm DNA fragmentation and protamine content (P1-DNA, P2-DNA, P1 + P2-DNA) decreased in spermatozoa after DGC. Abnormally high and low P1/P2 ratios were associated with increased sperm DNA fragmentation. Couples with idiopathic infertility had abnormally high P1/P2 ratios. Fertilization rates and embryo quality decreased as sperm DNA fragmentation or protamines increased. Sperm DNA fragmentation was lower in couples achieving pregnancies after IVF, but not after ICSI. There was no correlation between protamine content (P1-DNA, P2-DNA, P1 + P2-DNA) or P1/P2 ratios and IVF or ICSI pregnancies. Increased sperm DNA fragmentation was associated with abnormal protamination and resulted in lower fertilization rates, poorer embryo quality and reduced pregnancy rates. During late spermatogenesis, around 85% of the histones in the sperm nucleus are replaced with protamines. This process results in sperm chromatin compaction and also transcription silencing. In the human, protamines are comprised of two types: protamine-1 (P1) and protamine-2 (P2). Variations in sperm protamine expression are associated with male infertility. Similarly, sperm DNA integrity is important for male fertility. The aim of this study was to investigate relationships between DNA fragmentation, sperm protamines and assisted reproduction treatment. Semen and spermatozoa prepared by density-gradient centrifugation (DGC) from 73 men undergoing IVF and 24 men undergoing intracytoplasmic sperm injection (ICSI) were included in the study. Nuclear DNA fragmentation was assessed using the alkaline Comet assay and protamines were separated by acid-urea polyacrylamide gels. Sperm DNA fragmentation and protamine content decreased in spermatozoa after DGC. Abnormally high and low P1/P2 ratios were associated with increased sperm DNA fragmentation. Couples with idiopathic infertility had abnormally high P1/P2 ratios. Fertilization rates and embryo quality decreased as sperm DNA fragmentation or protamines increased. Sperm DNA fragmentation was lower in couples achieving pregnancies after IVF, but not after ICSI. There was no correlation between protamine content or P1/P2 ratios and IVF or ICSI pregnancies. Increased sperm DNA fragmentation was associated with abnormal protamination and resulted in lower fertilization rates, poorer embryo quality and reduced pregnancy rates.
Resumo:
Red algae (Rhodophyta) are an ancient group with unusual morphological, biochemical, and life-history features including a complete absence of flagella. Although the red algae present many opportunities for studying speciation, this has rarely been explicitly addressed. Here, we examine an aspect of paternal gene flow by determining fertilization success of female Neosiphonia harveyi (Ceramiales), which retains a morphological record of all successful and unsuccessful female gametes. High fertilization rates were observed except when there were no males at all within the tidepool, or in a submerged marina environment. Small numbers of reproductive males were able to saturate fertilization rates, suggesting that limited availability of sperm may be less significant in red algae than previously thought. In another member of the Ceramiales, Antithamnion, relatively large chromosomes permit karyological identification of polyploids. The Western Pacific species Antithamnion sparsum is closely related to the diploid species Antithamnion defectum, known only from the Eastern Pacific, and appears to have evolved from it. Molecular evidence suggests that A. sparsum is an autopolyploid, and that the European species known as Antithamnion densum is divergent from the A. sparsum/defectum complex.
Resumo:
To assess the efficiency of different agro-environmental strategies used to reduce groundwater pollution by nitrates, transport modelling in soils and groundwater has been carried out on two withdrawal areas in an alluvial plain. In a first time, the agro-environmental model AgriFlux allowed the simulation of water and nitrates fluxes flowing to groundwater. This model was calibrated for each agro-pedological unit of the studied territory. In a second time, the application of the hydrogeological model MODFLOW-MT3D allowed the simulation of nitrate transport in groundwater for the 1980-2004 period. This soil-groundwater coupled modelling has shown that soil nature is the first factor that conditions the vulnerability to nitrates. Thus, nitrate leaching occurs preferentially under sandy soils. Efficiency of different agro-environmental operations for groundwater quality recovery was quantified. The best results are obtained by combination of (1) grassland re-installation on sandy agricultural lots located in near well protection perimeter and (2) fertilization reduction on sandy agricultural lots located in the well alimentation area upstream the near protection perimeter. On other soils, the effect of grassland on groundwater quality improvement is more limited. Nevertheless, the control of nitrate fertilisation remains essential and is justified in both near and far well protection perimeters. Modelling thus allows optimising and priorizing agro-environmental actions in alluvial agricultural zones. [Comte J.-C., Banton O., Kockmann F., Villard A., Creuzot G. (2006), Assessment of groundwater quality recovery strategies using nitrate transport modelling. Application to the Saône alluvial formations (Tournus, Saône-et-Loire), Ingénieries Eau-Agriculture-Territoires, 45, 15-28]
Resumo:
The genus Polysiphonia Greville, nom. cons., has had a long and confused nomenclatural history. At present, Polysiphonia has a wide circumscription, including at least 200 species, but it is heterogeneous in many vegetative and reproductive developmental features. Central to any re-evaluation of the genus is a detailed examination of the type species of Polysiphonia, P. urceolata (Lightfoot ex Dillwyn) Greville, which is conspecific with P. stricta (Dillwyn) Greville. We here report on the vegetative and reproductive morphology of P. stricta, including P, urceolata, based on type and other material from the British Isles. Thalli consist of prostrate and erect ecorticate axes with four pericentral cells, attached by unicellular rhizoids remaining in open connection with pericentral cells. Prostrate axes lack vegetative trichoblasts; trichoblasts occur seasonally on erect axes. Branch initials are cut off from the subapical cell at intervals of four or five segments in dichotomous and alternating pairs rather than being formed horn each axial cell in the spiral pattern typical of most species of Polysiphonia. Spermatangial branch initials, which are trichoblast homologues, are produced directly from each axial cell at the tips of erect branches, not subtended by trichoblasts, and have two- to five-celled sterile tips when mature. The mature carpogonial branch is four-celled with a two-celled first sterile group and a one-celled second sterile group. Following presumed fertilization, direct fusion apparently takes place between carpogonium and auxiliary tell; mature cystocarps are usually urceolate. Tetrasporangia are formed from the third pericentral cell, in straight series, and have two pre-sporangial cover cells. Previous accounts of a third, post-sporangial cover cell could not be substantiated. P. stricta and a small group of other Polysiphonia species differ in several important respects from most members of the genus, which have rhizoids cut off from pericentral cells by a cell division, abundant trichoblasts, spirally arranged tetrasporangia and a post-sporangial cover cell. The branching pattern of P. stricta highlights the difficulties of distinguishing between the tribes Polysiphonieae and Pterosiphonieae.
Resumo:
A Pikea species attributed to Pikea californica Harvey has been established in England since at least 1967. Previously, this species was believed to occur only in Japan and Pacific North America. Comparative morphological studies on field-collected material and cultured isolates from England, California, and Japan and analysis of organellar DNA restriction fragment length polymorphisms, detected using labeled organellar DNA as a non-radioactive probe, showed that English Pikea is conspecific with P. californica from California. Both populations consist of dioecious gametophytes with heteromorphic life histories involving crustose tetrasporophytes; 96% of organellar DNA bands were shared between interoceanic samples. A second dioecious species of Pikea, P. pinnata Setchell In Collins, Holden et Setchell, grows sympatrically with P. californica near San Francisco but can be distinguished by softer texture, more regular branching pattern, and elongate cystocarpic axes. Pikea pinnata and P. californica samples shared 49-50% of organellar DNA bands, consistent with their being distinct species. Herbarium specimens of P. robusta Abbott resemble P. pinnata in some morphological features but axes are much wider; P. robusta may represent a further, strictly subtidal species but fertile material is unknown. Pikea thalli from Japan, previously attributed to P. californica and described here as Pikea yoshizakii sp. nov., are monoecious and show a strikingly different type of life history. After fertilization, gonimoblast filaments grow outward through the cortex and form tetrasporangial nemathecia; released tetraspores develop directly into erect thalli. Tetrasporoblastic life histories are characteristic of certain members of the Phyllophoraceae but were previously unknown in the Dumontiaceae. Japanese P. yoshizakii shared 55 and 56% of organellar DNA bands with P. californica and P. pinnata, respectively phylogenetic analysis indicated equally distant relationships to both species. Pikea yoshizakii or a closely similar species with the same life history occurs in southern California and Mexico.
Resumo:
A diminutive species of Aglaothamnion (Ceramiaceae, Rhodophyta), A. diaphanum sp. nov., is described from Brittany (Atlantic France), the Isles of Scilly (off S.W. England) and western Ireland. Aglaothamnion diaphanum is confined to the sublittoral zone, where it grows almost exclusively on algae and sessile animals attached to hard substrata. Thalli are delicate, and branched distichously in one plane. The main axes are ecorticate but may form loose non-corticating rhizoidal filaments. The lateral branches bear a characteristic, regularly alternate distichous series of branchlets, the first of which is always adaxial. All vegetative cells are uninucleate. The majority of field-collected plants bear only bisporangia, but a few bisporangial plants also form spermatangia; some male plants and a single female specimen have been collected. The spermatangial branchlets consist of 3-5 spermatangial mother cells each bearing 2-4 spermatangia, which are constricted around a central nucleus. None of the U-shaped carpogonial branches showed any sign of fertilization, and the gametangia appear to be non-functional. The bisporangia are ovoid and contain two uninucleate spores separated by an oblique curved wall. The occurrence of bisporangia and the lack of adherent cortication distinguish A. diaphanum from two similar species, Aglaothamnion bipinnatum (P. Crouan et H. Crouan) Feldmann-Mazoyer and Aglaothamnion decompositum (J. Agardh) Halos. The life history in culture of French and Irish isolates of A. diaphanum consists of a series of bisporangial generations, a single plant of which also formed spermatangia. Apical cells of bisporophytes are haploid (n = c. 32), but the first division of meiosis, with chromosome pairing and crossing over, occurs in dividing bisporocytes. The germinating bispores are haploid. Endodiploidization may occur in the early stages of sporangium development, as in some phycomycete fungi, or in vegetative cells that subsequently give rise to bisporocytes. This is the first demonstration in the red algae of meiotic bisporangia on plants of which the apical cells, at least, are haploid.
Resumo:
Differences in stable-isotope values, morphology and ecology in whitefish Coregonus lavaretus were investigated between the three basins of Loch Lomond. The results are discussed with reference to a genetic investigation to elucidate any substructuring or spawning site fidelity. Foraging fidelity between basins of Loch Lomond was indicated by delta 13C and delta 15N values of C. lavaretus muscle tissue. There was, however, no evidence of the existence of sympatric morphs in the C. lavaretus population. A previous report of two C. lavaretus 'species' in Loch Lomond probably reflects natural variation between individuals within a single mixed population.
Resumo:
Male infertility is a major cause of problems for many couples in conceiving a child. Recently, lifestyle pastimes such as alcohol, tobacco and marijuana have been shown to have further negative effects on male reproduction. The endocannabinoid system (ECS), mainly through the action of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) at cannabinoid (CB(1), CB(2)) and vanilloid (TRPV1) receptors, plays a crucial role in controlling functionality of sperm, with a clear impact on male reproductive potential. Here, sperm from fertile and infertile men were used to investigate content (through LC-ESI-MS), mRNA (through quantitative RT-PCR), protein (through Western Blotting and ELISA) expression, and functionality (through activity and binding assays) of the main metabolic enzymes of AEA and 2-AG (NAPE-PLD and FAAH, for AEA; DAGL and MAGL for 2-AG), as well as of their binding receptors CB(1), CB(2) and TRPV1. Our findings show a marked reduction of AEA and 2-AG content in infertile seminal plasma, paralleled by increased degradation: biosynthesis ratios of both substances in sperm from infertile versus fertile men. In addition, TRPV1 binding was detected in fertile sperm but was undetectable in infertile sperm, whereas that of CB(1) and CB(2) receptors was not statistically different in the two groups. In conclusion, this study identified unprecedented alterations of the ECS in infertile sperm, that might impact on capacitation and acrosome reaction, and hence fertilization outcomes. These alterations might also point to new biomarkers to determine male reproductive defects, and identify distinct ECS elements as novel targets for therapeutic exploitation of ECS-oriented drugs to treat male fertility problems.
Resumo:
The impact of ancient fertilization practices on the biogeochemistry of arable soils on the remote Scottish island of Hirta, St Kilda was investigated. The island was relatively unusual in that the inhabitants exploited seabird colonies for food, enabling high population densities to be sustained on a limited, and naturally poor, soil resource. A few other Scottish islands, the Faeroes and some Icelandic Islands, had similar cultural dependence on seabirds. Fertilization with human and animal waste streams (mainly peat ash and bird carcases) on Hirta over millennia has led to over-deepened, nutrient-rich soils (plaggen). This project set out to examine if this high rate of fertilization had adversely impacted the soil, and if so, to determine which waste streams were responsible. Arable soils were considerably elevated in Pb and Zn compared to non-arable soils. Using Pb isotope signatures and analysis of the waste streams, it was determined that this pollution came from peat and turf ash (Pb and Zn) and from bird carcases (Zn). This was also confirmed by (13)C and (15)N analysis of the profiles which showed that soil organic matter was highly enriched in marine-derived C and N compared to non-arable soils. The pollution of such a remote island may be typical of other 'bird culture' islands, and peat ash contamination of marginal arable soils at high latitudes may be widespread in terms of geographical area, but less intense at specific locations due to lower population densities than on Hirta.
Resumo:
This paper examines the impact of changes in the medical marketplace on medicalization in U.S. society. Using four cases (Viagra, Paxil, human growth hormone and in vitro fertilization), we focus on two aspects of the changing medical marketplace: the role of direct-to-consumer advertising of prescription drugs and the emergence of private medical markets. We demonstrate how consumers and pharmaceutical corporations contribute to medicalization, with physicians, insurance coverage, and changes in regulatory practices playing facilitating roles. In some cases, insurers attempt to counteract medicalization by restricting access. We distinguish mediated and private medical markets, each characterized by differing relationships with corporations, insurers, consumers, and physicians. In the changing medical environment, with medical markets as intervening factors, corporations and insurers are becoming more significant determinants in the medicalization process.
Resumo:
RATIONALE Stable isotope values (d13C and d15N) of darted skin and blubber biopsies can shed light on habitat use and diet of cetaceans, which are otherwise difficult to study. Non-dietary factors affect isotopic variability, chiefly the depletion of C due to the presence of C-rich lipids. The efficacy of post hoc lipid-correction models (normalization) must be tested. METHODS For tissues with high natural lipid content (e.g., whale skin and blubber), chemical lipid extraction or normalization is necessary. C:N ratios, d13C values and d15N values were determined for duplicate control and lipid-extracted skin and blubber of fin (Balaenoptera physalus), humpback (Megaptera novaeangliae) and minke whales (B. acutorostrata) by continuous-flow elemental analysis isotope ratio mass spectrometry (CF-EA-IRMS). Six different normalization models were tested to correct d13C values for the presence of lipids. RESULTS Following lipid extraction, significant increases in d13C values were observed for both tissues in the three species. Significant increases were also found for d15N values in minke whale skin and fin whale blubber. In fin whale skin, the d15N values decreased, with no change observed in humpback whale skin. Non-linear models generally out-performed linear models and the suitability of models varied by species and tissue, indicating the need for high model specificity, even among these closely related taxa. CONCLUSIONS Given the poor predictive power of the models to estimate lipid-free d13C values, and the unpredictable changes in d N values due to lipid-extraction, we recommend against arithmetical normalization in accounting for lipid effects on d13C values for balaenopterid skin or blubber samples. Rather, we recommend that duplicate analysis of lipid-extracted (d13C values) and non-treated tissues (d15N values) be used. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Nitrogen is one of the most common impurities in diamond. On a substitutional site it acts as a deep donor, approximately 1.7 eV below the conduction band. Irradiation of nitrogen containing diamond and subsequent annealing creates the nitrogen vacancy centre, which has recently attracted much attention for quantum information processing application. Another possible product of irradiation and annealing of nitrogen containing diamond is interstitial nitrogen. Presumably, a mobile carbon interstitial migrates to a substitutional nitrogen to produce an interstitial nitrogen complex which may or may not be mobile. The configuration(s) of interstitial nitrogen related defects (e.g. bond centred, [001]-split) are not known. An infra-red (IR) absorption peak at 1450 cm-1 labelled H1a has been associated with an nitrogen interstitial complex. [1] Theoretical modelling suggested that this IR local mode is due to a bond centred nitrogen interstitial [2]. However, more recent modelling [3] suggests that this defect is mobile at temperatures were H1a is stable and instead assign H1a to two nitrogen atoms occupying a single lattice site in a [001]-split configuration. To date no electron paramagnetic resonance (EPR) spectra have been conclusively associated with an interstitial nitrogen defect.
In this study we present data from new EPR and optical absorption studies in combination with uniaxial stress of nitrogen interstitial related defects in electron irradiated and annealed nitrogen doped diamond. These measurements yield symmetry information about the defects allowing us to determine which of the proposed models are possible. EPR spectra of nitrogen interstitial related defects in samples isotopically enriched with 15N are reported and we show that these explain the lack of previous EPR data for these defects. Correlations between the IR absorbance and the integrated intensity of the new EPR defects are studied for varying irradiation doses and annealing temperatures.
Resumo:
Abstract Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes.
It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage
and childhood diseases. This review provides a synopsis of the most recent studies from each of the authors, all of whom have major
track records in the field of sperm DNA damage in the clinical setting. It explores current laboratory tests and the accumulating body
of knowledge concerning the relationship between sperm DNA damage and clinical outcomes. The paper proceeds to discuss the
strengths, weaknesses and clinical applicability of current sperm DNA tests. Next, the biological significance of DNA damage in
the male germ line is considered. Finally, as sperm DNA damage is often the result of oxidative stress in the male reproductive tract,
the potential contribution of antioxidant therapy in the clinical management of this condition is discussed. DNA damage in human spermatozoa is an important attribute of semen quality. It should be part of the clinical work up and properly controlled trials
addressing the effectiveness of antioxidant therapy should be undertaken as a matter of urgency.
Resumo:
The response of arsenate and non-tolerant Holcus lanatus L. phenotypes, where tolerance is achieved through suppression of high affinity phosphate/arsenate root uptake, was investigated under different growth regimes to investigate why there is a polymorphism in tolerance found in populations growing on uncontaminated soil. Tolerant plants screened from an arsenic uncontaminated population differed, when grown on the soil from the populations origin, from non-tolerants, in their biomass allocation under phosphate fertilization: non-tolerants put more resources into tiller production and down regulated investment in root production under phosphate fertilization while tolerants tillered less effectively and did not alter resource allocation to shoot biomass under phosphate fertilization. The two phenotypes also differed in their shoot mineral status having higher concentrations of copper, cadmium, lead and manganese, but phosphorus status differed little, suggesting tight homeostasis. The polymorphism was also widely present (40%) in other wild grass species suggesting an important ecological role for this gene that can be screened through plant root response to arsenate.
Resumo:
Shallow marine chitons (Mollusca:Polyplacophora:Chitonida) are widespread and well described from established morphoanatomical characters, yet key aspects of polyplacophoran phylogeny have remained unresolved. Several species, including Hemiarthrum setulosum Carpenter in Dall, 1876, and especially the rare and enigmatic Choriplax grayi (Adams & Angas, 1864), defy systematic placement. Choriplax is known from only a handful of specimens and its morphology is a mosaic of key taxonomic features from two different clades. Here, new molecular evidence provides robust support for its correct association with a third different clade: Choriplax is placed in the superfamily Mopalioidea. Hemiarthrum is included in Cryptoplacoidea, as predicted from morphological evidence. Our multigene analysis of standard nuclear and mitochondrial markers demonstrates that the topology of the order Chitonida is divided into four clades, which have also been recovered in previous studies: Mopalioidea is sister to Cryptoplacoidea, forming a clade Acanthochitonina. The family Callochitonidae is sister to Acanthochitonina. Chitonoidea is resolved as the earliest diverging group within Chitonida. Consideration of this unexpected result for Choriplax and our well-supported phylogeny has revealed differing patterns of shell reduction separating the two superfamilies within Acanthochitonina. As in many molluscs, shell reduction as well as the de novo development of key shell features has occurred using different mechanisms, in multiple lineages of chitons.