993 resultados para Fe Modeling
Resumo:
In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent two-phase hows and combustion in a new type of pulverized-coal combustor with one primary-air jet placed along the wall of the combustor. The results show that: (1) this continuum-trajectory model with reacting particle phase can be used in practical engineering to qualitatively predict the flame stability, concentrations of gas species, possibilities of slag formation and soot deposition, etc.; (2) large recirculation zones can be created in the combustor, which is favorable to the ignition and flame stabilization.
Resumo:
Molecular dynamics simulations are carried out in order to study the atomic structure of crystalline component, of nanocrystalline alpha-Fe when it is consolidated from small grains. A two-dimensional computational block is used to simulate the consolidation process. All the preset dislocations in the original grains glide out of them in the consolidation process, but new dislocations can generate when the grain size is large enough. It shows that dislocations exist in the consolidated material rather than in the original grains. Whether dislocations exist in the crystalline component of the resultant model nana-material depends upon grain size. The critical value of grain size for dislocation generation appears to be about 9 nm. This result agrees with experiments qualitatively.
Resumo:
An efficient method for solving the spatially inhomogeneous Boltzmann equation in a two-term approximation for low-pressure inductively coupled plasmas has been developed. The electron distribution function (EDF), a function of total electron energy and two spatial coordinates, is found self-consistently with the static space-charge potential which is computed from a 2D fluid model, and the rf electric field profile which is calculated from the Maxwell equations. The EDF and the spatial distributions of the electron density, potential, temperature, ionization rate, and the inductive electric field are calculated and discussed. (C) 1996 American Institute of Physics.
Resumo:
Based upon the spatially inhomogeneous Boltzmann equation in two-term approximation coupled with electromagnetic and fluid model analysis for the recently developed inductively coupled plasma sources, a self-consistent electron kinetic model is developed. The electron distribution function, spatial distributions of the electron density and ionization rate are calculated and discussed.
Resumo:
Using a variational method, a general three-dimensional solution to the problem of a sliding spherical inclusion embedded in an infinite anisotropic medium is presented in this paper. The inclusion itself is also a general anisotropic elastic medium. The interface is treated as a thin interface layer with interphase anisotropic properties. The displacements in the matrix and the inclusion are expressed as polynomial series of the cartesian coordinate components. Using the virtual work principle, a set of linear algebraic equations about unknown coefficients are obtained. Then the general sliding spherical inclusion problem is accurately solved. Based on this solution, a self-consistent method for sliding polycrystals is proposed. Combining this with a two-dimensional model of an aggregate polycrystal, a systematic analysis of the mechanical behaviour of sliding polycrystals is given in detail. Numerical results are given to show the significant effect of grain boundary sliding on the overall mechanical properties of aggregate polycrystals.
Resumo:
In order to understand the mechanism of the incipient spallation in rolled metals, a one dimensional statistical mode1 on evolution of microcracks in spallation was proposed. The crack length appears to be the fundamental variable in the statistical description. Two dynamic processes, crack nucleation and growth, were involved in the model of damage evolution. A simplified case was examined and preliminary correlation to experimental observations of spallation was made.
Resumo:
Fe基块体非晶合金具有极高的强度但通常表现出显著的宏观脆性,因此用常规拉伸、压缩等方法对这类合金的塑性变形行为和机理的研究具有很大困难.利用纳米压入和单轴压缩方法研究了Fe_(52)Cr_(15)Mo_9Er_3C_(15)B_6块体非晶合金的变形行为,考查了不同加载速率和不同晶化程度对变形行为和力学性能的影响,结果表明铸态和不同晶化程度样品在所研究的加载速率范围内的塑性变形过程中均未出现锯齿流变现象.用剪切带的时间和空间特性探讨了这种Fe基块体非晶合金在纳米压入过程中的特殊变形行为及其形成机制.