856 resultados para Exclusion process, Multi-species, Multi-scale modelling


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Range estimation is the core of many positioning systems such as radar, and Wireless Local Positioning Systems (WLPS). The estimation of range is achieved by estimating Time-of-Arrival (TOA). TOA represents the signal propagation delay between a transmitter and a receiver. Thus, error in TOA estimation causes degradation in range estimation performance. In wireless environments, noise, multipath, and limited bandwidth reduce TOA estimation performance. TOA estimation algorithms that are designed for wireless environments aim to improve the TOA estimation performance by mitigating the effect of closely spaced paths in practical (positive) signal-to-noise ratio (SNR) regions. Limited bandwidth avoids the discrimination of closely spaced paths. This reduces TOA estimation performance. TOA estimation methods are evaluated as a function of SNR, bandwidth, and the number of reflections in multipath wireless environments, as well as their complexity. In this research, a TOA estimation technique based on Blind signal Separation (BSS) is proposed. This frequency domain method estimates TOA in wireless multipath environments for a given signal bandwidth. The structure of the proposed technique is presented and its complexity and performance are theoretically evaluated. It is depicted that the proposed method is not sensitive to SNR, number of reflections, and bandwidth. In general, as bandwidth increases, TOA estimation performance improves. However, spectrum is the most valuable resource in wireless systems and usually a large portion of spectrum to support high performance TOA estimation is not available. In addition, the radio frequency (RF) components of wideband systems suffer from high cost and complexity. Thus, a novel, multiband positioning structure is proposed. The proposed technique uses the available (non-contiguous) bands to support high performance TOA estimation. This system incorporates the capabilities of cognitive radio (CR) systems to sense the available spectrum (also called white spaces) and to incorporate white spaces for high-performance localization. First, contiguous bands that are divided into several non-equal, narrow sub-bands that possess the same SNR are concatenated to attain an accuracy corresponding to the equivalent full band. Two radio architectures are proposed and investigated: the signal is transmitted over available spectrum either simultaneously (parallel concatenation) or sequentially (serial concatenation). Low complexity radio designs that handle the concatenation process sequentially and in parallel are introduced. Different TOA estimation algorithms that are applicable to multiband scenarios are studied and their performance is theoretically evaluated and compared to simulations. Next, the results are extended to non-contiguous, non-equal sub-bands with the same SNR. These are more realistic assumptions in practical systems. The performance and complexity of the proposed technique is investigated as well. This study’s results show that selecting bandwidth, center frequency, and SNR levels for each sub-band can adapt positioning accuracy.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Alpine snowbeds are characterised by a very short growing season. However, the length of the snow-free period is increasingly prolonged due to climate change, so that snowbeds become susceptible to invasions from neighbouring alpine meadow communities. We hypothesised that spatial distribution of species generated by plant interactions may indicate whether snowbed species will coexist with or will be out-competed by invading alpine species – spatial aggregation or segregation will point to coexistence or competitive exclusion, respectively. We tested this hypothesis in snowbeds of the Swiss Alps using the variance ratio statistics. We focused on the relationships between dominant snowbed species, subordinate snowbed species, and potentially invading alpine grassland species. Subordinate snowbed species were generally spatially aggregated with each other, but were segregated from alpine grassland species. Competition between alpine grassland and subordinate snowbed species may have caused this segregation. Segregation between these species groups increased with earlier snowmelt, suggesting an increasing importance of competition with climate change. Further, a dominant snowbed species (Alchemilla pentaphyllea) was spatially aggregated with subordinate snowbed species, while two other dominants (Gnaphalium supinum and Salix herbacea) showed aggregated patterns with alpine grassland species. These dominant species are known to show distinct microhabitat preferences suggesting the existence of hidden microhabitats with different susceptibility to invaders. These results allow us to suggest that alpine snowbed areas are likely to be reduced as a consequence of climate change and that invading species from nearby alpine grasslands could outcompete subordinate snowbed species. On the other hand, microhabitats dominated by Gnaphalium or Salix seem to be particularly prone to invasions by non-snowbed species.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Vegetation phenology is an important indicator of climate change and climate variability and it is strongly connected to biospheric–atmospheric gas exchange. We aimed to evaluate the applicability of phenological information derived from digital imagery for the interpretation of CO2 exchange measurements. For the years 2005–2007 we analyzed seasonal phenological development of 2 temperate mixed forests using tower-based imagery from standard RGB cameras. Phenological information was jointly analyzed with gross primary productivity (GPP) derived from net ecosystem exchange data. Automated image analysis provided reliable information on vegetation developmental stages of beech and ash trees covering all seasons. A phenological index derived from image color values was strongly correlated with GPP, with a significant mean time lag of several days for ash trees and several weeks for beech trees in early summer (May to mid-July). Leaf emergence dates for the dominant tree species partly explained temporal behaviour of spring GPP but were also masked by local meteorological conditions. We conclude that digital cameras at flux measurement sites not only provide an objective measure of the physiological state of a forest canopy at high temporal and spatial resolutions, but also complement CO2 and water exchange measurements, improving our knowledge of ecosystem processes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In contemporary societies there are different ways to perceive the relation between identity and alterity and to describe the difference between “us” and “them”, residents and foreigners. Anthropologist Sandra Wallman sustains that in multi-cultural urban spaces the frontiers of diversity are not only burdensome markers of identity, but rather they could also represent new chances to define “identity” and “alterity”. These frontiers, in fact, can work like interfaces through which to build time after time, in a creative way, a relationship with the other. From this point of view, the concept of boundary can offer many opportunities to creatively define the relation with the other and to sign new options for cognitive and physical movement. On the other side, in many cases we have a plenty of mechanisms of exclusion that transforms a purely empirical distinction between “us” and “them” in an ontological contrast, as in the case when the immigrant undergoes hostilities through discriminatory language. Even though these forms of racism are undoubtedly objectionable from a theoretical point of view, they are anyway socially “real”, in the sense that they are perpetually reaffirmed and strengthened in public opinion. They are in fact implicit “truths”, realities that are considered objective, common opinions that are part of day-to-day existence. That is the reason why an anthropological prospective including the study of “common sense” should be adopted in our present day studies on migration, as pointed out by American anthropologist Michael Herzfeld. My primary goal is to analyze with such a critical approach same pre-conditions of racism and exclusion in contemporary multi-cultural urban spaces. On the other hand, this essay would also investigate positive strategies of comparing, interchanging, and negotiating alterity in social work. I suggest that this approach can offer positive solutions in coping with “diversity” and in working out policies for recognizing a common identity which, at the same time, do not throw away the relevance of political and economic power.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In order to display a homogeneous image using multiple projectors, differences in the projected intensities must be compensated. In this paper, we present novel approaches to combine and extend existing techniques for edge blending and luminance harmonization to achieve a detailed luminance control. Furthermore, we apply techniques for improving the contrast ratio of multi-segmented displays also to the black offset correction. We also present a simple scheme to involve the displayed context in the correction process to dynamically improve the contrast in brighter images. In addition, we present a metric to evaluate the different methods and their influence on the visual quality.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We present the first 7500 yr long multi-proxy record from a raised bog located at the southern Baltic coast, Poland. Testate amoebae, plant macrofossils, pollen and microscopic charcoal were used to reconstruct environmental changes in Pomerania (northern Poland, Kaszuby Lakeland) from a 7-m thick peat archive of Stążki bog dated 5500 BC–AD 1250. We obtained a record of proxies representing different spatial scales: regional vegetation changed simultaneously with local vegetation, and testate amoebae showed a pattern of change similar to that of pollen and plant macrofossils. On the basis of the combined proxies, we distinguished three hydroclimatic stages: moist conditions 5500–3450 BC, drier conditions with regionally increased fires up to 600 BC, and again moist conditions from 600 BC onward. During the drier interval, a first climatic shift to wetter conditions at 1700 BC is indicated by regional pollen as the replacement of Corylus by Carpinus, and locally by, e.g., the increase of Hyalosphenia elegans and mire plants such as Sphagnum sec. Cuspidata. Furthermore, we observed a correlation since 600 BC among the re-expansion of Carpinus (after a sudden decline ca. 950 BC), increased peat accumulation, increase of Hyalosphenia species, and fewer fires, suggesting lower evapotranspiration and a stable high water table in the bog. Fagus started to expand after AD 810 gradually replacing Carpinus, which was possibly due to a gradually more oceanic climate, though we cannot exclude human impact on the forests. Peat accumulation, determined by radiocarbon dating, varied with bog surface wetness. The hydroclimatic phases found in Stążki peatland are similar to moisture changes recorded in other sites from Poland and Europe. This is the first detailed record of hydroclimatic change during the Holocene in the southern Baltic region, so it forms a reference site for further studies on other southern Baltic bogs that are in progress.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We investigated the distribution of commensal staphylococcal species and determined the prevalence of multi-drug resistance in healthy cats and dogs. Risk factors associated with the carriage of multi-drug resistant strains were explored. Isolates from 256 dogs and 277 cats were identified at the species level using matrix-assisted laser desorption ionisation-time of flight mass spectrometry. The diversity of coagulase-negative Staphylococci (CNS) was high, with 22 species in dogs and 24 in cats. Multi-drug resistance was frequent (17%) and not always associated with the presence of the mecA gene. A stay in a veterinary clinic in the last year was associated with an increased risk of colonisation by multi-drug resistant Staphylococci (OR = 2.4, 95% CI: 1.1˜5.2, p value LRT = 0.04). When identifying efficient control strategies against antibiotic resistance, the presence of mechanisms other than methicillin resistance and the possible role of CNS in the spread of resistance determinants should be considered.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Aims: To assess observations with multimodality imaging of the Absorb bioresorbable everolimus-eluting vascular scaffold performed in two consecutive cohorts of patients who were serially investigated either at 6 and 24 months or at 12 and 36 months. Methods and results: In the ABSORB multicentre single-arm trial, 45 patients (cohort B1) and 56 patients (cohort B2) underwent serial invasive imaging, specifically quantitative coronary angiography (QCA), intravascular ultrasound (IVUS), radiofrequency backscattering (IVUS-VH) and optical coherence tomography (OCT). Between one and three years, late luminal loss remained unchanged (6 months: 0.19 mm, 1 year: 0.27 mm, 2 years: 0.27 mm, 3 years: 0.29 mm) and the in-segment angiographic restenosis rate for the entire cohort B (n=101) at three years was 6%. On IVUS, mean lumen, scaffold, plaque and vessel area showed enlargement up to two years. Mean lumen and scaffold area remained stable between two and three years whereas significant reduction in plaque behind the struts occurred with a trend toward adaptive restrictive remodelling of EEM. Hyperechogenicity of the vessel wall, a surrogate of the bioresorption process, decreased from 23.1% to 10.4% with a reduction of radiofrequency backscattering for dense calcium and necrotic core. At three years, the count of strut cores detected on OCT increased significantly, probably reflecting the dismantling of the scaffold; 98% of struts were covered. In the entire cohort B (n=101), the three-year major adverse cardiac event rate was 10.0% without any scaffold thrombosis. Conclusions: The current investigation demonstrated the dynamics of vessel wall changes after implantation of a bioresorbable scaffold, resulting at three years in stable luminal dimensions, a low restenosis rate and a low clinical major adverse cardiac events rate.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In order to overcome the limitations of the linear-quadratic model and include synergistic effects of heat and radiation, a novel radiobiological model is proposed. The model is based on a chain of cell populations which are characterized by the number of radiation induced damages (hits). Cells can shift downward along the chain by collecting hits and upward by a repair process. The repair process is governed by a repair probability which depends upon state variables used for a simplistic description of the impact of heat and radiation upon repair proteins. Based on the parameters used, populations up to 4-5 hits are relevant for the calculation of the survival. The model describes intuitively the mathematical behaviour of apoptotic and nonapoptotic cell death. Linear-quadratic-linear behaviour of the logarithmic cell survival, fractionation, and (with one exception) the dose rate dependencies are described correctly. The model covers the time gap dependence of the synergistic cell killing due to combined application of heat and radiation, but further validation of the proposed approach based on experimental data is needed. However, the model offers a work bench for testing different biological concepts of damage induction, repair, and statistical approaches for calculating the variables of state.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The north-eastern escarpment of Madagascar has been labelled a global biodiversity hotspot due to its extremely high rates of endemic species which are heavily threatened by accelerated deforestation rates and landscape change. The traditional practice of shifting cultivation or "tavy" used by the majority of land users in this area to produce subsistence rice is commonly blamed for these threats. A wide range of stakeholders ranging from conservation to development agencies, and from the private to the public sector has therefore been involved in trying to find solutions to protect the remaining forest fragments and to increase agricultural production. Consequently, provisioning, regulating and socio-cultural services of this forest-mosaic landscape are fundamentally altered leading to trade-offs between them and consequently new winners and losers amongst the stakeholders at different scales. However, despite a growing amount of evidence from case studies analysing local changes, the regional dynamics of the landscape and their contribution to such trade-offs remain poorely understood. This study therefore aims at using generalised landscape units as a base for the assessment of multi-level stakeholder claims on ecosystem services to inform negotiation, planning and decision making at a meso-scale. The presented study applies a mixed-method approach combining remote sensing, GIS and socio-economic methods to reveal current landscape dynamics, their change over time and the corresponding ecosystem service trade-offs induced by diverse stakeholder claims on the regional level. In a first step a new regional land cover classification for three points in time (1995, 2005 and 2011) was conducted including agricultural classes characteristic for shifting cultivation systems. Secondly, a novel GIS approach, termed “landscape mosaics approach” originally developed to assess dynamics of shifting cultivation landscapes in Laos was applied. Through this approach generalised landscape mosaics were generated allowing for a better understanding of changes in land use intensities instead of land cover. As a next step we will try to use these landscape units as proxies to map provisioning and regulating ecosystem services throughout the region. Through the overlay with other regional background data such as accessibility and population density and information from a region-wide stakeholder analysis, multiscale trade-offs between different services will be highlighted. The trade-offs observed on the regional scale will then be validated through a socio-economic ground-truthing within selected sites at the local scale. We propose that such meso-scale knowledge is required by all stakeholders involved in decision making towards sustainable development of north-eastern Madagascar.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Previous studies have shown that collective property rights offer higher flexibility than individual property and improve sustainable community-based forest management. Our case study, carried out in the Beni department of Bolivia, does not contradict this assertion, but shows that collective rights have been granted in areas where ecological contexts and market facilities were less favourable to intensive land use. Previous experiences suggest investigating political processes in order to understand the criteria according to which access rights were distributed. Based on remote sensing and on a multi-level land governance framework, our research confirms that land placed under collective rights, compared to individual property, is less affected by deforestation among Andean settlements. However, analysis of the historical process of land distribution in the area shows that the distribution of property rights is the result of a political process based on economic, spatial, and environmental strategies that are defined by multiple stakeholders. Collective titles were established in the more remote areas and distributed to communities with lower productive potentialities. Land rights are thus a secondary factor of forest cover change which results from diverse political compromises based on population distribution, accessibility, environmental perceptions, and expected production or extraction incomes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

An Ensemble Kalman Filter is applied to assimilate observed tracer fields in various combinations in the Bern3D ocean model. Each tracer combination yields a set of optimal transport parameter values that are used in projections with prescribed CO2 stabilization pathways. The assimilation of temperature and salinity fields yields a too vigorous ventilation of the thermocline and the deep ocean, whereas the inclusion of CFC-11 and radiocarbon improves the representation of physical and biogeochemical tracers and of ventilation time scales. Projected peak uptake rates and cumulative uptake of CO2 by the ocean are around 20% lower for the parameters determined with CFC-11 and radiocarbon as additional target compared to those with salinity and temperature only. Higher surface temperature changes are simulated in the Greenland–Norwegian–Iceland Sea and in the Southern Ocean when CFC-11 is included in the Ensemble Kalman model tuning. These findings highlights the importance of ocean transport calibration for the design of near-term and long-term CO2 emission mitigation strategies and for climate projections.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Decadal-to-century scale trends for a range of marine environmental variables in the upper mesopelagic layer (UML, 100–600 m) are investigated using results from seven Earth System Models forced by a high greenhouse gas emission scenario. The models as a class represent the observation-based distribution of oxygen (O2) and carbon dioxide (CO2), albeit major mismatches between observation-based and simulated values remain for individual models. By year 2100 all models project an increase in SST between 2 °C and 3 °C, and a decrease in the pH and in the saturation state of water with respect to calcium carbonate minerals in the UML. A decrease in the total ocean inventory of dissolved oxygen by 2% to 4% is projected by the range of models. Projected O2 changes in the UML show a complex pattern with both increasing and decreasing trends reflecting the subtle balance of different competing factors such as circulation, production, remineralization, and temperature changes. Projected changes in the total volume of hypoxic and suboxic waters remain relatively small in all models. A widespread increase of CO2 in the UML is projected. The median of the CO2 distribution between 100 and 600m shifts from 0.1–0.2 mol m−3 in year 1990 to 0.2–0.4 mol m−3 in year 2100, primarily as a result of the invasion of anthropogenic carbon from the atmosphere. The co-occurrence of changes in a range of environmental variables indicates the need to further investigate their synergistic impacts on marine ecosystems and Earth System feedbacks.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The responses of carbon dioxide (CO2) and other climate variables to an emission pulse of CO2 into the atmosphere are often used to compute the Global Warming Potential (GWP) and Global Temperature change Potential (GTP), to characterize the response timescales of Earth System models, and to build reduced-form models. In this carbon cycle-climate model intercomparison project, which spans the full model hierarchy, we quantify responses to emission pulses of different magnitudes injected under different conditions. The CO2 response shows the known rapid decline in the first few decades followed by a millennium-scale tail. For a 100 Gt-C emission pulse added to a constant CO2 concentration of 389 ppm, 25 ± 9% is still found in the atmosphere after 1000 yr; the ocean has absorbed 59 ± 12% and the land the remainder (16 ± 14%). The response in global mean surface air temperature is an increase by 0.20 ± 0.12 °C within the first twenty years; thereafter and until year 1000, temperature decreases only slightly, whereas ocean heat content and sea level continue to rise. Our best estimate for the Absolute Global Warming Potential, given by the time-integrated response in CO2 at year 100 multiplied by its radiative efficiency, is 92.5 × 10−15 yr W m−2 per kg-CO2. This value very likely (5 to 95% confidence) lies within the range of (68 to 117) × 10−15 yr W m−2 per kg-CO2. Estimates for time-integrated response in CO2 published in the IPCC First, Second, and Fourth Assessment and our multi-model best estimate all agree within 15% during the first 100 yr. The integrated CO2 response, normalized by the pulse size, is lower for pre-industrial conditions, compared to present day, and lower for smaller pulses than larger pulses. In contrast, the response in temperature, sea level and ocean heat content is less sensitive to these choices. Although, choices in pulse size, background concentration, and model lead to uncertainties, the most important and subjective choice to determine AGWP of CO2 and GWP is the time horizon.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP) was created to evaluate our present ability to simulate large-scale wetland characteristics and corresponding methane (CH4) emissions. A multi-model comparison is essential to evaluate the key uncertainties in the mechanisms and parameters leading to methane emissions. Ten modelling groups joined WETCHIMP to run eight global and two regional models with a common experimental protocol using the same climate and atmospheric carbon dioxide (CO2) forcing datasets. We reported the main conclusions from the intercomparison effort in a companion paper (Melton et al., 2013). Here we provide technical details for the six experiments, which included an equilibrium, a transient, and an optimized run plus three sensitivity experiments (temperature, precipitation, and atmospheric CO2 concentration). The diversity of approaches used by the models is summarized through a series of conceptual figures, and is used to evaluate the wide range of wetland extent and CH4 fluxes predicted by the models in the equilibrium run. We discuss relationships among the various approaches and patterns in consistencies of these model predictions. Within this group of models, there are three broad classes of methods used to estimate wetland extent: prescribed based on wetland distribution maps, prognostic relationships between hydrological states based on satellite observations, and explicit hydrological mass balances. A larger variety of approaches was used to estimate the net CH4 fluxes from wetland systems. Even though modelling of wetland extent and CH4 emissions has progressed significantly over recent decades, large uncertainties still exist when estimating CH4 emissions: there is little consensus on model structure or complexity due to knowledge gaps, different aims of the models, and the range of temporal and spatial resolutions of the models.