5 resultados para Exclusion process, Multi-species, Multi-scale modelling
em CaltechTHESIS
Resumo:
Morphogenesis is a phenomenon of intricate balance and dynamic interplay between processes occurring at a wide range of scales (spatial, temporal and energetic). During development, a variety of physical mechanisms are employed by tissues to simultaneously pattern, move, and differentiate based on information exchange between constituent cells, perhaps more than at any other time during an organism's life. To fully understand such events, a combined theoretical and experimental framework is required to assist in deciphering the correlations at both structural and functional levels at scales that include the intracellular and tissue levels as well as organs and organ systems. Microscopy, especially diffraction-limited light microscopy, has emerged as a central tool to capture the spatio-temporal context of life processes. Imaging has the unique advantage of watching biological events as they unfold over time at single-cell resolution in the intact animal. In this work I present a range of problems in morphogenesis, each unique in its requirements for novel quantitative imaging both in terms of the technique and analysis. Understanding the molecular basis for a developmental process involves investigating how genes and their products- mRNA and proteins-function in the context of a cell. Structural information holds the key to insights into mechanisms and imaging fixed specimens paves the first step towards deciphering gene function. The work presented in this thesis starts with the demonstration that the fluorescent signal from the challenging environment of whole-mount imaging, obtained by in situ hybridization chain reaction (HCR), scales linearly with the number of copies of target mRNA to provide quantitative sub-cellular mapping of mRNA expression within intact vertebrate embryos. The work then progresses to address aspects of imaging live embryonic development in a number of species. While processes such as avian cartilage growth require high spatial resolution and lower time resolution, dynamic events during zebrafish somitogenesis require higher time resolution to capture the protein localization as the somites mature. The requirements on imaging are even more stringent in case of the embryonic zebrafish heart that beats with a frequency of ~ 2-2.5 Hz, thereby requiring very fast imaging techniques based on two-photon light sheet microscope to capture its dynamics. In each of the hitherto-mentioned cases, ranging from the level of molecules to organs, an imaging framework is developed, both in terms of technique and analysis to allow quantitative assessment of the process in vivo. Overall the work presented in this thesis combines new quantitative tools with novel microscopy for the precise understanding of processes in embryonic development.
Resumo:
The concept of a carbon nanotube microneedle array is explored in this thesis from multiple perspectives including microneedle fabrication, physical aspects of transdermal delivery, and in vivo transdermal drug delivery experiments. Starting with standard techniques in carbon nanotube (CNT) fabrication, including catalyst patterning and chemical vapor deposition, vertically-aligned carbon nanotubes are utilized as a scaffold to define the shape of the hollow microneedle. Passive, scalable techniques based on capillary action and unique photolithographic methods are utilized to produce a CNT-polymer composite microneedle. Specific examples of CNT-polyimide and CNT-epoxy microneedles are investigated. Further analysis of the transport properties of polymer resins reveals general requirements for applying arbitrary polymers to the fabrication process.
The bottom-up fabrication approach embodied by vertically-aligned carbon nanotubes allows for more direct construction of complex high-aspect ratio features than standard top-down fabrication approaches, making microneedles an ideal application for CNTs. However, current vertically-aligned CNT fabrication techniques only allow for the production of extruded geometries with a constant cross-sectional area, such as cylinders. To rectify this limitation, isotropic oxygen etching is introduced as a novel fabrication technique to create true 3D CNT geometry. Oxygen etching is utilized to create a conical geometry from a cylindrical CNT structure as well as create complex shape transformations in other CNT geometries.
CNT-polymer composite microneedles are anchored onto a common polymer base less than 50 µm thick, which allows for the microneedles to be incorporated into multiple drug delivery platforms, including modified hypodermic syringes and silicone skin patches. Cylindrical microneedles are fabricated with 100 µm outer diameter and height of 200-250 µm with a central cavity, or lumen, diameter of 30 µm to facilitate liquid drug flow. In vitro delivery experiments in swine skin demonstrate the ability of the microneedles to successfully penetrate the skin and deliver aqueous solutions.
An in vivo study was performed to assess the ability of the CNT-polymer microneedles to deliver drugs transdermally. CNT-polymer microneedles are attached to a hand actuated silicone skin patch that holds a liquid reservoir of drugs. Fentanyl, a potent analgesic, was administered to New Zealand White Rabbits through 3 routes of delivery: topical patch, CNT-polymer microneedles, and subcutaneous hypodermic injection. Results demonstrate that the CNT-polymer microneedles have a similar onset of action as the topical patch. CNT-polymer microneedles were also vetted as a painless delivery approach compared to hypodermic injection. Comparative analysis with contemporary microneedle designs demonstrates that the delivery achieved through CNT-polymer microneedles is akin to current hollow microneedle architectures. The inherent advantage of applying a bottom-up fabrication approach alongside similar delivery performance to contemporary microneedle designs demonstrates that the CNT-polymer composite microneedle is a viable architecture in the emerging field of painless transdermal delivery.
Resumo:
In this work, we further extend the recently developed adaptive data analysis method, the Sparse Time-Frequency Representation (STFR) method. This method is based on the assumption that many physical signals inherently contain AM-FM representations. We propose a sparse optimization method to extract the AM-FM representations of such signals. We prove the convergence of the method for periodic signals under certain assumptions and provide practical algorithms specifically for the non-periodic STFR, which extends the method to tackle problems that former STFR methods could not handle, including stability to noise and non-periodic data analysis. This is a significant improvement since many adaptive and non-adaptive signal processing methods are not fully capable of handling non-periodic signals. Moreover, we propose a new STFR algorithm to study intrawave signals with strong frequency modulation and analyze the convergence of this new algorithm for periodic signals. Such signals have previously remained a bottleneck for all signal processing methods. Furthermore, we propose a modified version of STFR that facilitates the extraction of intrawaves that have overlaping frequency content. We show that the STFR methods can be applied to the realm of dynamical systems and cardiovascular signals. In particular, we present a simplified and modified version of the STFR algorithm that is potentially useful for the diagnosis of some cardiovascular diseases. We further explain some preliminary work on the nature of Intrinsic Mode Functions (IMFs) and how they can have different representations in different phase coordinates. This analysis shows that the uncertainty principle is fundamental to all oscillating signals.
Resumo:
G-protein coupled receptors (GPCRs) form a large family of proteins and are very important drug targets. They are membrane proteins, which makes computational prediction of their structure challenging. Homology modeling is further complicated by low sequence similarly of the GPCR superfamily.
In this dissertation, we analyze the conserved inter-helical contacts of recently solved crystal structures, and we develop a unified sequence-structural alignment of the GPCR superfamily. We use this method to align 817 human GPCRs, 399 of which are nonolfactory. This alignment can be used to generate high quality homology models for the 817 GPCRs.
To refine the provided GPCR homology models we developed the Trihelix sampling method. We use a multi-scale approach to simplify the problem by treating the transmembrane helices as rigid bodies. In contrast to Monte Carlo structure prediction methods, the Trihelix method does a complete local sampling using discretized coordinates for the transmembrane helices. We validate the method on existing structures and apply it to predict the structure of the lactate receptor, HCAR1. For this receptor, we also build extracellular loops by taking into account constraints from three disulfide bonds. Docking of lactate and 3,5-dihydroxybenzoic acid shows likely involvement of three Arg residues on different transmembrane helices in binding a single ligand molecule.
Protein structure prediction relies on accurate force fields. We next present an effort to improve the quality of charge assignment for large atomic models. In particular, we introduce the formalism of the polarizable charge equilibration scheme (PQEQ) and we describe its implementation in the molecular simulation package Lammps. PQEQ allows fast on the fly charge assignment even for reactive force fields.
Resumo:
In the measurement of the Higgs Boson decaying into two photons the parametrization of an appropriate background model is essential for fitting the Higgs signal mass peak over a continuous background. This diphoton background modeling is crucial in the statistical process of calculating exclusion limits and the significance of observations in comparison to a background-only hypothesis. It is therefore ideal to obtain knowledge of the physical shape for the background mass distribution as the use of an improper function can lead to biases in the observed limits. Using an Information-Theoretic (I-T) approach for valid inference we apply Akaike Information Criterion (AIC) as a measure of the separation for a fitting model from the data. We then implement a multi-model inference ranking method to build a fit-model that closest represents the Standard Model background in 2013 diphoton data recorded by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). Potential applications and extensions of this model-selection technique are discussed with reference to CMS detector performance measurements as well as in potential physics analyses at future detectors.