920 resultados para Estudiantes de secundaria
Resumo:
Tomando el aprendizaje como participación en prácticas discursivas, presentamos un estudio sobre el aprendizaje de la Geometría en clases de secundaria con alumnado en situación de riesgo social. Bajo el supuesto del uso de la tecnología como promotor de participación, se diseñó e implementó una secuencia didáctica en un entorno de geometría dinámica. En el análisis de casos de estudiantes se consideraron aspectos cognitivos, afectivos e instrumentales de modo integrado. En este informe se ilustran dos resultados derivados del desarrollo de un caso. Por un lado, la dificultad por definir la noción de incentro se asocia a un uso del entorno informático poco significativo matemáticamente. Por otro, el rechazo a la exposición pública en la pizarra digital interactiva se asocia a la experiencia de dificultades en procesos de pensamiento matemático.
Resumo:
En este artículo se reportan los resultados de una investigación que explora las concepciones alternativas de profesores y estudiantes de bachillerato acerca del comportamiento variacional de funciones. Para tal exploración se diseñó un cuestionario en el que se usan los sistemas de representación verbal, gráfico y analítico. En especial se exploraron concepciones relativas al comportamiento variacional de funciones [v. gr: Para qué x, f´(x)>0], comportamiento variacional y signo simultáneamente [v. gr: Para qué x se cumple que: f´(x)>0 y f(x)<0] y las relativas a los procesos de reversibilidad: [v. gr: Dada f´(x) esbozar f(x) y viceversa]. Los resultados indican que una cantidad significativa de encuestados, creen que f(x)<0 si su gráfica está en el semieje negativo de las x; consideran a f´(x) como asociada a un punto y no al comportamiento de f(x); la mayoría se muestra imposibilitado para transferir información variacional de la gráfica de f´(x) a f(x).
Resumo:
El propósito de esta investigación en curso es indagar sobre las representaciones que tienen estudiantes del nivel medio superior (secundaria y primer nivel universitario) acerca de nociones matemáticas variacionales, prestando especial atención a su forma de aprenderlas y buscando propiciar espacios de reflexión respecto de ellas, con el objeto de aportar información que sirva de base para la elaboración de diseños didácticos tendientes a mediar -en procesos de profundidad creciente- aprendizajes de nociones matemáticas variacionales, por ejemplo, la razón de cambio de una magnitud. Como técnica exploratoria consideramos el uso de bitácoras personales de reflexión de los estudiantes, para luego, en una segunda etapa, derivar en la construcción y aplicación de un cuestionario y la realización de entrevistas para triangular fuentes de información. En este artículo se reportan evidencias de la primera etapa, provenientes de las bitácoras personales, en el contexto de un curso de cálculo inicial.
Resumo:
Este trabajo es parte de un proyecto de investigación sobre la aplicación de tecnología computacional en la enseñanza y aprendizaje de matemáticas con alumnos de nivel medio básico o secundaria (séptimo a noveno grado) y nivel medio superior o bachillerato (décimo a doceavo grado), en particular, trata de entender la función mediadora del efecto de “arrastre” del software de geometría dinámica en la cognición de sujetos que estudian las nociones de variación y variable. Aquí reportamos los resultados de una exploración, usando Cabri, en el aprendizaje de esas nociones con estudiantes de nivel medio básico de 13-14 años de edad. Se describen las actividades, las respuestas de los estudiantes y una experiencia que sugiere el potencial de la verbalización de los resultados por los estudiantes en el proceso de simbolización algebraica.
Resumo:
El rol del aprendizaje significativo mediante la utilización de nuevas estrategias de enseñanza. Este aprendizaje involucra un proceso en el que lo que aprendemos es el producto de la información nueva, interpretada a la luz de lo que ya sabemos. Para que haya aprendizaje significativo, es necesario que el alumno pueda relacionar el material de aprendizaje con la estructura de conocimientos de que ya dispone. De esta forma, junto con la motivación favorable para la comprensión, y, los esfuerzos que requiere, una condición esencial del aprendizaje de conceptos será que estos se relacionen con los conocimientos previos de los alumnos. El nuevo conocimiento, que queremos que el alumno aprenda en esta oportunidad, surgirá de un adecuado desarrollo del razonamiento deductivo y manejo de los conocimientos previos. Entendiendo por razonamiento deductivo al proceso de razonamiento en que, para obtener una conclusión lógicamente necesaria a partir de ciertas premisas, los pasos están encadenados siguiendo ciertas reglas lógicas y son justificados rigurosamente. Las justificaciones están basadas en los axiomas y definiciones de la teoría respectiva, en teoremas demostrados con anterioridad y en las premisas o hipótesis del problema o teorema. El docente debe ayudar al estudiante a desarrollar y usar el poder del razonamiento deductivo comprometiéndolo permanentemente a pensar, analizar y deducir conjeturas en clase, además debe crear y seleccionar tareas apropiadas que puedan involucrar la generalización, la organización de datos para validar o refutar una conjetura. Un grupo de bachillerato del último año desarrolló la demostración de un teorema de convergencia de series, con los resultados de un 46% que la realizó exitosamente, versus un 36% que no lo logró. Los alumnos que lograron hacer la demostración, no eran los más estudiosos pero tenían una buena capacidad de razonamiento. En cambio los que generalmente preparan las evaluaciones y que se apoyan mucho en la memoria, no lograron un buen desempeño.
Resumo:
Este módulo tiene como propósito profundizar en el currículo de matemáticas de la educación básica secundaria y media en Colombia. Con este objetivo describimos en primer lugar algunos elementos destacados de la teoría curricular, como la noción de currículo y el estudio de sus componentes, las herramientas elegidas para realizar dicho estudio. A continuación, centrándonos más específicamente en la problemática de la planificación, se propone una reflexión sobre los diferentes procesos de planificación en los que intervienen los profesores en formación, con mayor o menor responsabilidad, como parte de su actividad profesional y sobre la caracterización del contexto social, institucional y de aula en el que desarrollan dicha actividad. Este módulo contempla también una primera recogida de información y la toma de decisiones sobre el contenido matemático que los estudiantes trabajarán a lo largo del programa para desarrollar un ciclo del análisis didáctico.
Resumo:
Este estudio de caso hace parte de una investigación que se está realizando con estudiantes sordos de grados octavo y décimo, con el propósito de lograr la comprensión/construcción del concepto de función, desde las dimensiones epistemológicas, didáctica y cognitiva. El estudio se fundamenta en el marco teórico de los registros de representación semiótica y la metodología de la Ingeniería didáctica, apoyado en el diseño, desarrollo e implementación de un software.
Resumo:
En éste trabajo se reportan resultados de la investigación que referencia el título. El proyecto se desarrolló en estudiantes de noveno grado, de educación básica, a través de situaciones problema del contexto sociocultural y de las ciencias, bajo un diseño cualitativo y en las tres fases ; diseño y aplicación de una prueba diagnóstica, para reconocimiento de posibles dificultades de los estudiantes, intervención en el aula, para superación de las dificultades detectadas, y una prueba de contraste, para valorar el logro de las estrategias aplicadas y obtener información para mejoramiento del aprendizaje de los estudiantes. Los resultados muestran avances significativos de los estudiantes en cuanto a la comprensión de los conceptos, procedimientos y aplicaciones del pensamiento métrico.
Resumo:
Exponemos en este documento algunos resultados de una investigación cualitativa que tiene como objetivo diseñar experiencias que posibiliten el desarrollo de habilidades comunicativas (NCTM, 2000) en estudiantes de once grado, y analizar como dichas habilidades contribuyen en el progreso de su pensamiento algebraico. Este estudio surge para atender una problemática identificada en estudiantes de nuevo ingreso a la universidad, quienes en una prueba inicial dejan ver que sus respuestas incorrectas refieren más a su baja interpretación de enunciados que a la incorrecta aplicación de algoritmos. Para la consecución de dicho objetivo se diseña e implementa un plan de intervención con algunos casos de estudio, quienes en las primeras etapas de implementación del plan diseñado recaen en las mismas dificultades.
Resumo:
El siguiente documento presenta una secuencia de actividades para trabajar la noción del concepto de limite involucrado en el pensamiento variacional en grado once, donde se toma como punto de partida el trabajo con sucesiones, permitiendo desarrollar a través del uso de diferentes tipos de sucesiones y la noción de convergencia; dicho concepto, tomado desde la definición de (Steward, Redlin, & Watson, 2001). Basado en la metodología propuesta por el grupo (DECA, 1992), la cual, no solo muestra el enseñar matemáticas, como entregar algoritmos al estudiante, sino que por el contrario, un aprendizaje desde la construcción del objeto matemático, resaltando la participación activa y critica del estudiante.
Resumo:
Este trabajo reporta una experiencia de aula con estudiantes de cálculo de grado once de un colegio oficial del Distrito Capital, en donde se desarrollaron actividades que tienen en cuenta el uso de los conceptos de fracción, razón y número racional; así como los procesos de clasificación y ordenamiento de números racionales en contextos de aproximación. La intervención del profesor buscó proponer actividades matemáticas adecuadas para que los estudiantes interactuaran y comprendieran las nociones de fracción, razón y número racional al utilizarlas en el desarrollo del curso de cálculo.
Resumo:
Esta intervención se realizó con estudiantes con rendimiento académico sobresaliente en un colegio distrital de la ciudad de Bogotá. El instrumento aplicado es del profesor Pedro Javier Rojas y fue discutido en el seminario de Transición Aritmética-Álgebra de la Maestría en Educación de la Universidad Distrital Francisco José de Caldas. Se presentan los resultados de la implementación de un instrumento que tiene como fin, en este caso, indagar sobre los significados de la letra en contextos numéricos en estudiantes de grado 8° a 11°. El análisis se hace a partir de lo que se esperaba antes de la aplicación y lo que realmente ocurrió al aplicarlo.
Resumo:
Presentamos una actividad que relaciona los fractales, y más concretamente la dimensión fractal, con las ciudades. Se realiza una breve incursión en el concepto de fractal y dimensión fractal para pasar posteriormente a una ejemplificación y una propuesta de trabajo en el que mostramos un posible orden en los pasos a seguir para estimar la dimensión fractal del contorno de una ciudad. Mostramos los resultados obtenidos por alumnos de 4º de ESO en el cálculo de la dimensión fractal del contorno de las localidades a las que pertenecen los alumnos del centro con el objetivo de comparar la “rugosidad” de todas ellas.
Resumo:
La Constitución de Cádiz (1812) inicia el origen de la enseñanza secundaria en España. Dichos estudios corren parejos con el desarrollo de la burguesía como clase diferenciada, y como tal se identifican los nuevos estudios con la nueva clase social. Paralelamente al nacimiento de la secundaria, los contenidos en matemáticas de los programas, se van abriendo paso y quitando horas a los tradicionales de humanidades. El recorrido histórico termina con la trascendental Ley Moyano en 1857.
Resumo:
El número de oro y el número plástico pertenecen a la clase de los números mórficos. En este artículo revisamos algunos aspectos históricos, presentamos algunas de sus propiedades y proponemos actividades sobre ellos, que permitirán trabajar transversalmente álgebra y geometría. Usando el lenguaje funcional como modelo de representación, los alumnos podrán conjeturar, de forma intuitiva, un resultado fundamental: Solo existen dos números mórficos, el número de oro y el número plástico.