915 resultados para Estimation error
Resumo:
In this paper, we show a method of obtaining general and orthogonal moments, specifically Legendre and Zernicke moments, from the Radon Transform data of a two-dimensional function. The regular or geometric moments are first evaluated directly from the projection data and the orthogonal moments are derived from these regular moments.
Resumo:
In this paper, we present robust semi-blind (SB) algorithms for the estimation of beamforming vectors for multiple-input multiple-output wireless communication. The transmitted symbol block is assumed to comprise of a known sequence of training (pilot) symbols followed by information bearing blind (unknown) data symbols. Analytical expressions are derived for the robust SB estimators of the MIMO receive and transmit beamforming vectors. These robust SB estimators employ a preliminary estimate obtained from the pilot symbol sequence and leverage the second-order statistical information from the blind data symbols. We employ the theory of Lagrangian duality to derive the robust estimate of the receive beamforming vector by maximizing an inner product, while constraining the channel estimate to lie in a confidence sphere centered at the initial pilot estimate. Two different schemes are then proposed for computing the robust estimate of the MIMO transmit beamforming vector. Simulation results presented in the end illustrate the superior performance of the robust SB estimators.
Resumo:
The weighted-least-squares method using sensitivity-analysis technique is proposed for the estimation of parameters in water-distribution systems. The parameters considered are the Hazen-Williams coefficients for the pipes. The objective function used is the sum of the weighted squares of the differences between the computed and the observed values of the variables. The weighted-least-squares method can elegantly handle multiple loading conditions with mixed types of measurements such as heads and consumptions, different sets and number of measurements for each loading condition, and modifications in the network configuration due to inclusion or exclusion of some pipes affected by valve operations in each loading condition. Uncertainty in parameter estimates can also be obtained. The method is applied for the estimation of parameters in a metropolitan urban water-distribution system in India.
Resumo:
The effect of fourteen minor elements (Al, As, B, Bi, C, Ga, Ge, In, N, P, Pb, S, Sb and Sn) on the solubility of oxygen in silicon melt has been estimated using a recently developed theoretical equation, with only fundamental physical parameters such as hard sphere diameter, atomic volume and molar heat of solution at infinite dilution as inputs. The results are expressed in the form of interaction parameters. Although only limited experimental data are available for comparison, the theoretical approach appears to predict the correct sign, but underestimates the magnitude of the interaction between oxygen and alloying elements. The present theoretical approach is useful in making qualitative predications on the effect of minor elements on the solubility of oxygen in silicon melt, when direct measurements are not available.
Resumo:
The problem of estimating the time-dependent statistical characteristics of a random dynamical system is studied under two different settings. In the first, the system dynamics is governed by a differential equation parameterized by a random parameter, while in the second, this is governed by a differential equation with an underlying parameter sequence characterized by a continuous time Markov chain. We propose, for the first time in the literature, stochastic approximation algorithms for estimating various time-dependent process characteristics of the system. In particular, we provide efficient estimators for quantities such as the mean, variance and distribution of the process at any given time as well as the joint distribution and the autocorrelation coefficient at different times. A novel aspect of our approach is that we assume that information on the parameter model (i.e., its distribution in the first case and transition probabilities of the Markov chain in the second) is not available in either case. This is unlike most other work in the literature that assumes availability of such information. Also, most of the prior work in the literature is geared towards analyzing the steady-state system behavior of the random dynamical system while our focus is on analyzing the time-dependent statistical characteristics which are in general difficult to obtain. We prove the almost sure convergence of our stochastic approximation scheme in each case to the true value of the quantity being estimated. We provide a general class of strongly consistent estimators for the aforementioned statistical quantities with regular sample average estimators being a specific instance of these. We also present an application of the proposed scheme on a widely used model in population biology. Numerical experiments in this framework show that the time-dependent process characteristics as obtained using our algorithm in each case exhibit excellent agreement with exact results. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Predictions of two popular closed-form models for unsaturated hydraulic conductivity (K) are compared with in situ measurements made in a sandy loam field soil. Whereas the Van Genuchten model estimates were very close to field measured values, the Brooks-Corey model predictions were higher by about one order of magnitude in the wetter range. Estimation of parameters of the Van Genuchten soil moisture characteristic (SMC) equation, however, involves the use of non-linear regression techniques. The Brooks-Corey SMC equation has the advantage of being amenable to application of linear regression techniques for estimation of its parameters from retention data. A conversion technique, whereby known Brooks-Corey model parameters may be converted into Van Genuchten model parameters, is formulated. The proposed conversion algorithm may be used to obtain the parameters of the preferred Van Genuchten model from in situ retention data, without the use of non-linear regression techniques.
Resumo:
A parallel matrix multiplication algorithm is presented, and studies of its performance and estimation are discussed. The algorithm is implemented on a network of transputers connected in a ring topology. An efficient scheme for partitioning the input matrices is introduced which enables overlapping computation with communication. This makes the algorithm achieve near-ideal speed-up for reasonably large matrices. Analytical expressions for the execution time of the algorithm have been derived by analysing its computation and communication characteristics. These expressions are validated by comparing the theoretical results of the performance with the experimental values obtained on a four-transputer network for both square and irregular matrices. The analytical model is also used to estimate the performance of the algorithm for a varying number of transputers and varying problem sizes. Although the algorithm is implemented on transputers, the methodology and the partitioning scheme presented in this paper are quite general and can be implemented on other processors which have the capability of overlapping computation with communication. The equations for performance prediction can also be extended to other multiprocessor systems.
Resumo:
Prohibitive test time, nonuniformity of excitation, and signal nonlinearity are major concerns associated with employing dc, sine, and triangular/ramp signals, respectively, while determining static nonlinearity of analog-to-digital converters (ADCs) with high resolution (i.e., ten or more bits). Attempts to overcome these issues have been examined with some degree of success. This paper describes a novel method of estimating the ``true'' static nonlinearity of an ADC using a low-frequency sine signal (for example, less than 10 Hz) by employing the histogram-based approach. It is based on the well-known fact that the variation of a sine signal is ``reasonably linear'' when the angle is small, for example, in the range of +/- 5 degrees to +/- 7 degrees. In the proposed method, the ADC under test has to be ``fed'' with this ``linear'' portion of the sinewave. The presence of any harmonics and offset in input excitation makes this linear part of the sine signal marginally different compared with that of an ideal ramp signal of equal amplitude. However, since it is a sinusoid, this difference can be accurately determined and later compensated from the measured ADC output. Thus, the corrected ADC output will correspond to the true ADC static nonlinearity. The implementation of the proposed method is discussed along with experimental results for two 8-b ADCs and one 10-b ADC which are then compared with the static characteristics estimated by the conventional DC method.
Resumo:
Nonlinear finite element analysis is used for the estimation of damage due to low-velocity impact loading of laminated composite circular plates. The impact loading is treated as an equivalent static loading by assuming the impactor to be spherical and the contact to obey Hertzian law. The stresses in the laminate are calculated using a 48 d.o.f. laminated composite sector element. Subsequently, the Tsai-Wu criterion is used to detect the zones of failure and the maximum stress criterion is used to identify the mode of failure. Then the material properties of the laminate are degraded in the failed regions. The stress analysis is performed again using the degraded properties of the plies. The iterative process is repeated until no more failure is detected in the laminate. The problem of a typical T300/N5208 composite [45 degrees/0 degrees/-45 degrees/90 degrees](s) circular plate being impacted by a spherical impactor is solved and the results are compared with experimental and analytical results available in the literature. The method proposed and the computer code developed can handle symmetric, as well as unsymmetric, laminates. It can be easily extended to cover the impact of composite rectangular plates, shell panels and shells.
Resumo:
It is observed that the daily mean temperature of the soil is linear with depth and the variation of the temperature is sinusoidal with a period of a day. Based on these observations the one-dimensional heat conduction equation for the soil can be solved which gives the amplitude and phase variation of the temperature wave with depth. Given the temperature data at three levels below the surface, the amplitude and phase variation and hence the surface temperature variation over the day are estimated. The daily mean temperature of the surface is estimated from linear extrapolation of the daily means at the three levels below the surface. Estimated values of soil thermal diffusivity show a subtantial change after sudden and heavy rains.
Resumo:
An important tool in signal processing is the use of eigenvalue and singular value decompositions for extracting information from time-series/sensor array data. These tools are used in the so-called subspace methods that underlie solutions to the harmonic retrieval problem in time series and the directions-of-arrival (DOA) estimation problem in array processing. The subspace methods require the knowledge of eigenvectors of the underlying covariance matrix to estimate the parameters of interest. Eigenstructure estimation in signal processing has two important classes: (i) estimating the eigenstructure of the given covariance matrix and (ii) updating the eigenstructure estimates given the current estimate and new data. In this paper, we survey some algorithms for both these classes useful for harmonic retrieval and DOA estimation problems. We begin by surveying key results in the literature and then describe, in some detail, energy function minimization approaches that underlie a class of feedback neural networks. Our approaches estimate some or all of the eigenvectors corresponding to the repeated minimum eigenvalue and also multiple orthogonal eigenvectors corresponding to the ordered eigenvalues of the covariance matrix. Our presentation includes some supporting analysis and simulation results. We may point out here that eigensubspace estimation is a vast area and all aspects of this cannot be fully covered in a single paper. (C) 1995 Academic Press, Inc.
Resumo:
In the past few years there have been attempts to develop subspace methods for DoA (direction of arrival) estimation using a fourth?order cumulant which is known to de?emphasize Gaussian background noise. To gauge the relative performance of the cumulant MUSIC (MUltiple SIgnal Classification) (c?MUSIC) and the standard MUSIC, based on the covariance function, an extensive numerical study has been carried out, where a narrow?band signal source has been considered and Gaussian noise sources, which produce a spatially correlated background noise, have been distributed. These simulations indicate that, even though the cumulant approach is capable of de?emphasizing the Gaussian noise, both bias and variance of the DoA estimates are higher than those for MUSIC. To achieve comparable results the cumulant approach requires much larger data, three to ten times that for MUSIC, depending upon the number of sources and how close they are. This is attributed to the fact that in the estimation of the cumulant, an average of a product of four random variables is needed to make an evaluation. Therefore, compared to those in the evaluation of the covariance function, there are more cross terms which do not go to zero unless the data length is very large. It is felt that these cross terms contribute to the large bias and variance observed in c?MUSIC. However, the ability to de?emphasize Gaussian noise, white or colored, is of great significance since the standard MUSIC fails when there is colored background noise. Through simulation it is shown that c?MUSIC does yield good results, but only at the cost of more data.
Resumo:
The presence of residual chlorine and organic matter govern the bacterial regrowth within a water distribution system. The bacterial growth model is essential to predict the spatial and temporal variation of all these substances throughout the system. The parameters governing the bacterial growth and biodegradable dissolved organic carbon (BDOC) utilization are difficult to determine by experimentation. In the present study, the estimation of these parameters is addressed by using simulation-optimization procedure. The optimal solution by genetic algorithm (GA) has indicated that the proper combination of parameter values are significant rather than correct individual values. The applicability of the model is illustrated using synthetic data generated by introducing noise in to the error-free measurements. The GA was found to be a potential tool in estimating the parameters controlling the bacterial growth and BDOC utilization. Further, the GA was also used for evaluating the sensitivity issues relating parameter values and objective function. It was observed that mu and k(cl) are more significant and dominating compared to the other parameters. But the magnitude of the parameters is also an important issue in deciding the dominance of a particular parameter. GA is found to be a useful tool in autocalibration of bacterial growth model and a sensitivity study of parameters.
Resumo:
The interest in low bit rate video coding has increased considerably. Despite rapid progress in storage density and digital communication system performance, demand for data-transmission bandwidth and storage capacity continue to exceed the capabilities of available technologies. The growth of data-intensive digital audio, video applications and the increased use of bandwidth-limited media such as video conferencing and full motion video have not only sustained the need for efficient ways to encode analog signals, but made signal compression central to digital communication and data-storage technology. In this paper we explore techniques for compression of image sequences in a manner that optimizes the results for the human receiver. We propose a new motion estimator using two novel block match algorithms which are based on human perception. Simulations with image sequences have shown an improved bit rate while maintaining ''image quality'' when compared to conventional motion estimation techniques using the MAD block match criteria.
Resumo:
We describe here two non-interferometric methods for the estimation of the phase of transmitted wavefronts through refracting objects. The phase of the wavefronts obtained is used to reconstruct either the refractive index distribution of the objects or their contours. Refraction corrected reconstructions are obtained by the application of an iterative loop incorporating digital ray tracing for forward propagation and a modified filtered back projection (FBP) for reconstruction. The FBP is modified to take into account non-straight path propagation of light through the object. When the iteration stagnates, the difference between the projection data and an estimate of it obtained by ray tracing through the final reconstruction is reconstructed using a diffraction tomography algorithm. The reconstruction so obtained, viewed as a correction term, is added to the estimate of the object from the loop to obtain an improved final refractive index reconstruction.