976 resultados para Electron charge transfer


Relevância:

80.00% 80.00%

Publicador:

Resumo:

CrN films on a bipolar plate in polymer electrolyte membrane fuel cells have several advantages owing to their excellent corrosion resistance and mechanical properties. Three CrN samples deposited at various radio frequency (RF) powers by RF magnetron sputtering were evaluated under potentiodynamic, potentiostatic and electrochemical impedance spectroscopy conditions. The electrochemical impedance spectroscopy data were monitored for 168 h in a corrosive environment at 70 °C to determine the coating performance at +600 mVSCE under simulated cathodic conditions in a polymer electrolyte membrane fuel cell. The electrochemical behavior of the coatings increased with decreasing RF power. CrN films on the AISI 316 stainless steel substrate showed high protective efficiency and charge transfer resistance, i.e. increasing corrosion resistance with decreasing RF power. X-ray diffraction confirmed the formation of a CrN(200) preferred orientation at low RF power.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The performance of surface finishes as a function of the pH of the utilized plating solution was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 wt.% NaCl solution. In addition, the surface finishes were examined by x-ray diffraction (XRD), and the contact angle of the liquid/solid interface was recorded. NiP films on copper substrates with gold coatings exhibited their highest coating performance at pH 5. This was attributed to the films having the highest protective efficiency and charge transfer resistance, lowest porosity value, and highest contact angle among those examined as a result of the strongly preferred Au(111) orientation and the improved surface wettability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we report a mild and cost-effective solution method to directly grow Ni-substituted Co3O4 (ternary NiCo2O4) nanorod arrays on Cu substrates. Electrochemical impedance spectroscopy (EIS) measurements show that the values of the electrolyte resistance Re and charge-transfer resistance Rct of NiCo2O4 are 6.8 and 63.5 Ω, respectively, which are significantly lower than those of binary Co3O4 (10.4 and 122.4 Ω). This EIS characterization strongly confirms that the ternary NiCo2O4 anode has much higher electrical conductivity than that of the binary Co3O4 electrode materials, which should greatly enhance the lithium storage performances. Due to the well-aligned 1D nanorod microstructure and a higher electrical conductivity, these ternary NiCo2O4 nanorod arrays manifest high specific capacity, excellent cycling stability (a high reversible capacity of about 830 mA h g−1 was achieved after 30 cycles at 0.5 C) and high rate capability (787, 695, 512, 254, 127 mA h g−1 at 1 C, 2 C, 6 C 50 C and 110 C, respectively).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The author's studied the photocatalytic properties of rational designed TiO2-ZnO hybrid nanostructures, which were fabricated by the site-specific deposition of amorphous TiO2 on the tips of ZnO nanorods. Compared with the pure components of ZnO nanorods and amorphous TiO2 nanoparticles, these TiO2-ZnO hybrid nanostructures demonstrated a higher catalytic activity. The strong green emission quenching observed from photoluminescence of TiO2-ZnO hybrid nanostructures implied an enhanced charge transfer/separation process resulting from the novel type II heterostructures with fine interfaces. The catalytic performance of annealing products with different TiO2phase varied with the annealing temperatures. This is attributed to the combinational changes in Egof the TiO2phase, the specific surface area and the quantity of surface hydroxyl groups.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report distilled technical cashew nut shell liquid (DT-CNSL) as a non-transesterified biofuel and also as an additive to convert triglycerides to biofuel, without the need for the formation of methyl esters. DT-CNSL blends of diesel obey physico-chemical parameters of diesel. DT-CNSL offers stability to blends of straight vegetable oil (SVO) and tallow oil in diesel. Fluorescence studies using charge transfer probes show that the blend of DT-CNSL, triglycerides and diesel is a uniform solution, and fluorescence behavior is similar to that of diesel. The economics for the cultivation of cashew (Anacardium occidentale), its industrial use and rich carbon sink properties indicate that DT-CNSL could complement or replace traditional biodiesel crops like Jatropha and improve income for farmers. © 2014 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Through comparative studying on LiFePO4/C preparation process of adding carbon source in precursor and pre-sintered material, marked as LFP-1 (in-situ carbon coating) and LFP-2 respectively, by means of C-S test, XRD, SEM, BET, Raman, the effects of carbon content, morphology, particle size and surface carbon structure on the electrochemical performance of LiFePO4/C cathodes were investigated. SEM images showed that particle sizes of LFP-1 and LFP-2 are about 10μm and 100nm respectively. The EIS and galvnostatic charge-discharge tests indicated that LFP-1 has lower charge transfer resistance (Rct), better rate and cycle performance than that of LFP-2, which can be attributed to the different microstructure and the higher degree of graphitized carbon of LiFePO4/C. Raman spectroscopic analysis showed that the ratio of the ID/IG and Asp3/Asp2 of LFP-1 is lower that of LFP-2, which means the degree of graphitized carbon of LFP-1 is higher than that of LEP-2. These results have important significance for improving the overall performance of olivine cathode materials for lithium ion batteries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Blends between the widely used thermoset resin, epoxy, and the most abundant organic material, natural cellulose are demonstrated for the first time. The blending modification induced by charge transfer complexes using a room temperature ionic liquid, leads to the formation of thermally flexible thermoset materials. The blend materials containing low concentrations of cellulose were optically transparent which indicates the miscibility at these compositions. We observed the existence of intermolecular hydrogen bonding between epoxy and cellulose in the presence of the ionic liquid, leading to partial miscibility between these two polymers. The addition of cellulose improves the tensile mechanical properties of epoxy. This study reveals the use of ionic liquids as a compatible processing medium to prepare epoxy thermosets modified with natural polymers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ambient temperature sodium batteries hold the promise of a new generation of high energy density, low-cost energy storage technologies. Particularly challenging in sodium electrochemistry is achieving high stability at high charge/discharge rates. We report here mixtures of inorganic/organic cation fluorosulfonamide (FSI) ionic liquids that exhibit unexpectedly high Na+ transference numbers due to a structural diffusion mechanism not previously observed in this type of electrolyte. The electrolyte can therefore support high current density cycling of sodium. We investigate the effect of NaFSI salt concentration in methylpropylpyrrolidinium (C3mpyr) FSI ionic liquid (IL) on the reversible plating and dissolution of sodium metal, both on a copper electrode and in a symmetric Na/Na metal cell. NaFSI is highly soluble in the IL allowing the preparation of mixtures that contain very high Na contents, greater than 3.2 mol/kg (50 mol %) at room temperature. Despite the fact that overall ion diffusivity decreases substantially with increasing alkali salt concentration, we have found that these high Na+ content electrolytes can support higher current densities (1 mA/cm2) and greater stability upon continued cycling. EIS measurements indicate that the interfacial impedance is decreased in the high concentration systems, which provides for a particularly low-resistance solid-electrolyte interphase (SEI), resulting in faster charge transfer at the interface. Na+ transference numbers determined by the Bruce-Vincent method increased substantially with increasing NaFSI content, approaching >0.3 at the saturation concentration limit which may explain the improved performance. NMR spectroscopy, PFG diffusion measurements, and molecular dynamics simulations reveal a changeover to a facile structural diffusion mechanism for sodium ion transport at high concentrations in these electrolytes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Foram estudadas, neste trabalho, interacões por complexos de transferência de carga, através de medidas gravimétricas do grau de inchamento de géis de poli(isopreno) reticulado,contendo grupos aceptores de carga, em presença de grupos doadores de carga, de pequeno peso molecular, dissolvidos em tolueno. Para este fim, poli(isopreno) sintético proveniente da COPERBO - Companhia Pernambucana de Borracha Sintética, após purificação em clorofórmio, foi caracterizado por espectroscopia no infra-vermelho. O seu peso molecular médio foi determinado por viscosimetria em tolueno e o valor de Mv obtido foi 8,25 x 105. Através de epoxidação da dupla ligacão e hidrólise ácida do respectivo anel oxirano, foram introduzidos no poli(isopreno), previamente purificado, grupos aceptores de carga do tipo cloranil e ácido 3,5-dinitro-benzóico, e grupos doadores de carga do tipo carbazola. Obteve-se, desta forma, copolímeros aceptores do tipo poli (isopreno - co-cloranil) e poli(isopreno-co-(3,5-dinitro-benzoato)) e copolímero doador do tipo poli(isopreno- co-carbazola). A quantidade de cada espécie introduzida foi determinada por espectroscopia no ultra violeta. Poli(isopreno) e os copolímeros contendo grupos doadores ou aceptores foram reticulados em solução utilizando 4,4'-(4,4'-difenilmetileno)-bis- 1,2,4-triazolina-3,5-diona (BPMTD). Os filmes reticulados, após retirada a fase sol, e secos à vácuo, foram submetidos a inchamento em tolueno puro e em solução de tolueno contendo grupos aceptores ou doadores de carga, nas proporções 10:1, 1:1 e 1:10 (polímero: grupo doador ou polímero: grupo aceptor de carga), a 25, 30, 35 e 40ºC. Das medidas gravimétricas do grau de inchamento, foi verificado a formação de complexos por transferência de carga entre os copolímeros aceptores e carbazola. Foi verificado ainda que copolímeros contendo grupos aceptores do tipo cloranil possuem maior tendência a formar complexos por transferência de carga do que copolímeros aceptores contendo grupos 3,5-dinitro-benzoíla.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Visible photoluminescence (PL) was observed for the first time at room temperature in structurally disordered calcium strontium tungstate powder, Ca0.60Sr0.40WO4 (CSW), obtained by the polymeric precursor method. The PL behavior of CSW powders has been analyzed as a function of the disorder rate, based on experimental and theoretical studies. Quantum mechanical theory based on density functional theory at the B3LYP level has been employed to study the electronic structure of two periodic models representing both crystalline and disordered powders. Their electronic structures have been analyzed in terms of density of states, band dispersion and charge densities. The calculations indicate a break in symmetry when passing from crystalline to disordered models, creating localized electronic levels above the valence band. Moreover, a negative charge transfer process takes place from the [WO3] cluster to the [WO4] cluster. The polarization induced by the break in symmetry and the existence of localized levels favors the creation of trapped holes and electrons, originating the PL phenomenon. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report here the utilization of atomid layer deposition to passivate surface map states in mosoporous TiO2 nanoparticles for solid state dye sensitized solar cells based on 9,9'-spirobifluorene (spiro-OMeTAD). By depositing ZrO2 films with angstrom-level precision, coating the mesoporous TiO2 produces over a two-fold enhancement in short-circuit current density, as compared to a control device. Impedance spectroscopy measurements provide evidence that the ZrO2 coating reduces recombination lossed at the TiO2/spiro-OMeTAD interface and passivates localized surface states. Low-frequency negative capacitances, frequently observed in nanocomposite solar cells, have been associated with the surface-state mediated charge transfer from TiO2 to the spiro-OMeTAD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)