995 resultados para Electromagnetic theory
Resumo:
This paper presents a novel algebraic formulation of the central problem of screw theory, namely the determination of the principal screws of a given system. Using the algebra of dual numbers, it shows that the principal screws can be determined via the solution of a generalised eigenproblem of two real, symmetric matrices. This approach allows the study of the principal screws of the general screw systems associated with a manipulator of arbitrary geometry in terms of closed-form expressions of its architecture and configuration parameters. The formulation is illustrated with examples of practical manipulators.
Resumo:
In this paper, the radiated electric and magnetic fields above a perfectly conducting ground at different heights from 10 m to 10 km and for lateral distances varying from 20 m to 10 km from a lightning return stroke channel are computed and the field waveforms are presented. It has been observed that the vertical electric field reverses its polarity with height and this height depends on the radial distance from the lightning channel. The magnitude of the horizontal electric field, on the other hand,increases with height up to a certain height and then reduces. The effect of variation in the rate of rise of lightning current (di/dt) and the velocity of return stroke current on the radiated electric and magnetic fields for the above heights and distances have also been studied. It is seen that the variation in maximum current derivative does not have a significant influence on the electric field when ground is assumed as a perfect conductor but it influences significantly the horizontal electric field when ground has finite conductivity. The velocity of propagation of return stroke current on the other hand has significant influence for both perfectly as well as finitely conducting ground conditions.
Resumo:
The effect of electromagnetic stirring of melt on the final macrosegregation in the continuous casting of an aluminium alloy billet is studied numerically. A continuum mixture model for solidification in presence of electromagnetic stirring is presented. As a case study, simulations are performed for direct chill (DC) casting of an Al-Cu alloy and the effect of electromagnetic stirring on macrosegregation is analysed. The model predicts the temperature, velocity, and species distribution in the mold. As a special case, we have also studied the case in which dendritic particles are fragmented at the interface due to vigorous electromagnetic stirring. For this case, an additional conservation equation for the transport of solid fraction is solved. For modeling the resistance offered by moving solid crystals, a switching function in the momentum equations is used for variation of viscosity. The fragmentation and transport of dendritic particles has a profound effect on the final macrosegregation and microstructure of the solidified billet. It is found that the application of electromagnetic stirring in continuous casting of billets results in better temperature uniformity and macrosegregation pattern.
Resumo:
Shear deformation and higher order theories of plates in bending are (generally) based on plate element equilibrium equations derived either through variational principles or other methods. They involve coupling of flexure with torsion (torsion-type) problem and if applied vertical load is along one face of the plate, coupling even with extension problem. These coupled problems with reference to vertical deflection of plate in flexure result in artificial deflection due to torsion and increased deflection of faces of the plate due to extension. Coupling in the former case is eliminated earlier using an iterative method for analysis of thick plates in bending. The method is extended here for the analysis of associated stretching problem in flexure.
Resumo:
In this paper, we present a kinematic theory for Hoberman and other similar foldable linkages. By recognizing that the building blocks of such linkages can be modeled as planar linkages, different classes of possible solutions are systematically obtained including some novel arrangements. Criteria for foldability are arrived by analyzing the algebraic locus of the coupler curve of a PRRP linkage. They help explain generalized Hoberman and other mechanisms reported in the literature. New properties of such mechanisms including the extent of foldability, shape-preservation of the inner and outer profiles, multi-segmented assemblies and heterogeneous circumferential arrangements are derived. The design equations derived here make the conception of even complex planar radially foldable mechanisms systematic and easy. Representative examples are presented to illustrate the usage of the design equations and the kinematic theory.
Resumo:
A multiple UAV search and attack mission in a battlefield involves allocating UAVs to different target tasks efficiently. This task allocation becomes difficult when there is no communication among the UAVs and the UAVs sensors have limited range to detect the targets and neighbouring UAVs, and assess target status. In this paper, we propose a team theoretic approach to efficiently allocate UAVs to the targets with the constraint that UAVs do not communicate among themselves and have limited sensor range. We study the performance of team theoretic approach for task allocation on a battle field scenario. The performance obtained through team theory is compared with two other methods, namely, limited sensor range but with communication among all the UAVs, and greedy strategy with limited sensor range and no communication. It is found that the team theoretic strategy performs the best even though it assumes limited sensor range and no communication.
Resumo:
In this paper, several known computational solutions are readily obtained in a very natural way for the linear regulator, fixed end-point and servo-mechanism problems using a certain frame-work from scattering theory. The relationships between the solutions to the linear regulator problem with different terminal costs and the interplay between the forward and backward equations have enabled a concise derivation of the partitioned equations, the forward-backward equations, and Chandrasekhar equations for the problem. These methods have been extended to the fixed end-point, servo, and tracking problems.
Resumo:
The paper proposes a study of symmetrical and related components, based on the theory of linear vector spaces. Using the concept of equivalence, the transformation matrixes of Clarke, Kimbark, Concordia, Boyajian and Koga are shown to be column equivalent to Fortescue's symmetrical-component transformation matrix. With a constraint on power, criteria are presented for the choice of bases for voltage and current vector spaces. In particular, it is shown that, for power invariance, either the same orthonormal (self-reciprocal) basis must be chosen for both voltage and current vector spaces, or the basis of one must be chosen to be reciprocal to that of the other. The original �¿, ��, 0 components of Clarke are modified to achieve power invariance. For machine analysis, it is shown that invariant transformations lead to reciprocal mutual inductances between the equivalent circuits. The relative merits of the various components are discussed.
Resumo:
Lagrange's equation is utilized to show the analogy of a lossless microwave cavity resonator with the conventional LC network. A brief discussion on the resonant frequencies of a microwave cavity resonator and the two degenerate companion modes H01 and E11 appearing in a cavity is given. The first order perturbation theory of a small deformation of the wall of a cavity is discussed. The effects of perturbation, such as the change in the resonant frequency and the Q of a cavity, the change in the electromagnetic field configurations and hence mixing of modes are also discussed. An expression for the coupling coefficient between the two degenerate modes H01 and E11 is derived with the help of the field equations. Results indicate that in the absence of perturbation the above two degenerate modes can co-exist without losing their individual identities. Several applications of the perturbation theory, such as the measurement of the dielectric properties of matter, study of ferromagnetic resonance, etc., are described.
Resumo:
Abstract | In this article the shuffling of cards is studied by using the concept of a group action. We use some fundamental results in Elementary Number Theory to obtain formulas for the orders of some special shufflings, namely the Faro and Monge shufflings and give necessary and sufficient conditions for the Monge shuffling to be a cycle. In the final section we extend the considerations to the shuffling of multisets.