875 resultados para Dscriminative avoidance task
Resumo:
Adaptive embedded systems are required in various applications. This work addresses these needs in the area of adaptive image compression in FPGA devices. A simplified version of an evolution strategy is utilized to optimize wavelet filters of a Discrete Wavelet Transform algorithm. We propose an adaptive image compression system in FPGA where optimized memory architecture, parallel processing and optimized task scheduling allow reducing the time of evolution. The proposed solution has been extensively evaluated in terms of the quality of compression as well as the processing time. The proposed architecture reduces the time of evolution by 44% compared to our previous reports while maintaining the quality of compression unchanged with respect to existing implementations. The system is able to find an optimized set of wavelet filters in less than 2 min whenever the input type of data changes.
Resumo:
In this paper, we propose the distributed bees algorithm (DBA) for task allocation in a swarm of robots. In the proposed scenario, task allocation consists in assigning the robots to the found targets in a 2-D arena. The expected distribution is obtained from the targets' qualities that are represented as scalar values. Decision-making mechanism is distributed and robots autonomously choose their assignments taking into account targets' qualities and distances. We tested the scalability of the proposed DBA algorithm in terms of number of robots and number of targets. For that, the experiments were performed in the simulator for various sets of parameters, including number of robots, number of targets, and targets' utilities. Control parameters inherent to DBA were tuned to test how they affect the final robot distribution. The simulation results show that by increasing the robot swarm size, the distribution error decreased.
Resumo:
Generation of a complete damage energy and dpa cross section library up to 150 MeVbased on JEFF- 3.1.1 and suitable approximations (UPM) Postprocessing of photonuclear libraries (by CCFE) and thermal scattering tables (by UPM) at the backend of the calculational system (CCFE/UPM)
Resumo:
Unmanned Aerial Vehicles (UAVs) industry is a fast growing sector. Nowadays, the market offers numerous possibilities for off-the-shelf UAVs such as quadrotors or fixed-wings. Until UAVs demonstrate advance capabilities such as autonomous collision avoidance they will be segregated and restricted to flight in controlled environments. This work presents a visual fuzzy servoing system for obstacle avoidance using UAVs. To accomplish this task we used the visual information from the front camera. Images are processed off-board and the result send to the Fuzzy Logic controller which then send commands to modify the orientation of the aircraft. Results from flight test are presented with a commercial off-the-shelf platform.
Resumo:
AUTOFLY-Aid Project aims to develop and demonstrate novel automation support algorithms and tools to the flight crew for flight critical collision avoidance using “dynamic 4D trajectory management”. The automation support system is envisioned to improve the primary shortcomings of TCAS, and to aid the pilot through add-on avionics/head-up displays and reality augmentation devices in dynamically evolving collision avoidance scenarios. The main theoretical innovative and novel concepts to be developed by AUTOFLY-Aid project are a) design and development of the mathematical models of the full composite airspace picture from the flight deck’s perspective, as seen/measured/informed by the aircraft flying in SESAR 2020, b) design and development of a dynamic trajectory planning algorithm that can generate at real-time (on the order of seconds) flyable (i.e. dynamically and performance-wise feasible) alternative trajectories across the evolving stochastic composite airspace picture (which includes new conflicts, blunder risks, terrain and weather limitations) and c) development and testing of the Collision Avoidance Automation Support System on a Boeing 737 NG FNPT II Flight Simulator with synthetic vision and reality augmentation while providing the flight crew with quantified and visual understanding of collision risks in terms of time and directions and countermeasures.
Resumo:
This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-selection of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested in a decentralized solution where the robots themselves autonomously and in an individual manner, are responsible for selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-task distribution problem and we propose a solution using two different approaches by applying Response Threshold Models as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithms, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.
Resumo:
n recent years, the development of advanced driver assistance systems (ADAS) – mainly based on lidar and cameras – has considerably improved the safety of driving in urban environments. These systems provide warning signals for the driver in the case that any unexpected traffic circumstance is detected. The next step is to develop systems capable not only of warning the driver but also of taking over control of the car to avoid a potential collision. In the present communication, a system capable of autonomously avoiding collisions in traffic jam situations is presented. First, a perception system was developed for urban situations—in which not only vehicles have to be considered, but also pedestrians and other non-motor-vehicles (NMV). It comprises a differential global positioning system (DGPS) and wireless communication for vehicle detection, and an ultrasound sensor for NMV detection. Then, the vehicle's actuators – brake and throttle pedals – were modified to permit autonomous control. Finally, a fuzzy logic controller was implemented capable of analyzing the information provided by the perception system and of sending control commands to the vehicle's actuators so as to avoid accidents. The feasibility of the integrated system was tested by mounting it in a commercial vehicle, with the results being encouraging.
Resumo:
This work aims to develop a novel Cross-Entropy (CE) optimization-based fuzzy controller for Unmanned Aerial Monocular Vision-IMU System (UAMVIS) to solve the seeand- avoid problem using its accurate autonomous localization information. The function of this fuzzy controller is regulating the heading of this system to avoid the obstacle, e.g. wall. In the Matlab Simulink-based training stages, the Scaling Factor (SF) is adjusted according to the specified task firstly, and then the Membership Function (MF) is tuned based on the optimized Scaling Factor to further improve the collison avoidance performance. After obtained the optimal SF and MF, 64% of rules has been reduced (from 125 rules to 45 rules), and a large number of real flight tests with a quadcopter have been done. The experimental results show that this approach precisely navigates the system to avoid the obstacle. To our best knowledge, this is the first work to present the optimized fuzzy controller for UAMVIS using Cross-Entropy method in Scaling Factors and Membership Functions optimization.
Resumo:
In this paper, we study a robot swarm that has to perform task allocation in an environment that features periodic properties. In this environment, tasks appear in different areas following periodic temporal patterns. The swarm has to reallocate its workforce periodically, performing a temporal task allocation that must be synchronized with the environment to be effective. We tackle temporal task allocation using methods and concepts that we borrow from the signal processing literature. In particular, we propose a distributed temporal task allocation algorithm that synchronizes robots of the swarm with the environment and with each other. In this algorithm, robots use only local information and a simple visual communication protocol based on light blinking. Our results show that a robot swarm that uses the proposed temporal task allocation algorithm performs considerably more tasks than a swarm that uses a greedy algorithm.
Resumo:
This thesis presents a task-oriented approach to telemanipulation for maintenance in large scientific facilities, with specific focus on the particle accelerator facilities at European Organization for Nuclear Research (CERN) in Geneva, Switzerland and GSI Helmholtz Centre for Heavy Ion Research (GSI) in Darmstadt, Germany. It examines how telemanipulation can be used in these facilities and reviews how this differs from the representation of telemanipulation tasks within the literature. It provides methods to assess and compare telemanipulation procedures as well a test suite to compare telemanipulators themselves from a dexterity perspective. It presents a formalisation of telemanipulation procedures into a hierarchical model which can be then used as a basis to aid maintenance engineers in assessing tasks for telemanipulation, and as the basis for future research. The model introduces a new concept of Elemental Actions as the building block of telemanipulation movements and incorporates the dependent factors for procedures at a higher level of abstraction. In order to gain insight into realistic tasks performed by telemanipulation systems within both industrial and research environments a survey of teleoperation experts is presented. Analysis of the responses is performed from which it is concluded that there is a need within the robotics community for physical benchmarking tests which are geared towards evaluating the dexterity of telemanipulators for comparison of their dexterous abilities. A three stage test suite is presented which is designed to allow maintenance engineers to assess different telemanipulators for their dexterity. This incorporates general characteristics of the system, a method to compare kinematic reachability of multiple telemanipulators and physical test setups to assess dexterity from a both a qualitative perspective and measurably by using performance metrics. Finally, experimental results are provided for the application of the proposed test suite onto two telemanipulation systems, one from a research setting and the other within CERN. It describes the procedure performed and discusses comparisons between the two systems, as well as providing input from the expert operator of the CERN system.
Resumo:
Presentación del trabajo realizado en el marco del proyecto F4E, sobre el procesamiento de librerías de dispersión térmica de neutrones en formato ACE para su uso con el código MCNP. Se presentan tanto los métodos y procedimientos empleados, como los resultados y diferencias entre las distintas fuentes de datos.
Resumo:
The problem of optimal impulsive collision avoidance between two colliding objects in 3-dimensional elliptical Keplerian orbits is investigated with the purpose of establishing the optimal impulse direction and orbit location that give rise to the maximum miss distance following the maneuver. Closed-form analytical expressions are provided that predicts such distance and can be employed to perform a full optimization analysis. After verifying the accuracy of the expression for any orbital eccentricity and encounter geometry the optimum maneuver direction is derived as a function of the arc length separation between the maneuver point and the predicted collision point. The provided formulas can be used for high accuracy instantaneous estimation of the outcome of a generic impulsive collision avoidance maneuver and its optimization
Resumo:
This paper describes our participation at SemEval- 2014 sentiment analysis task, in both contextual and message polarity classification. Our idea was to com- pare two different techniques for sentiment analysis. First, a machine learning classifier specifically built for the task using the provided training corpus. On the other hand, a lexicon-based approach using natural language processing techniques, developed for a ge- neric sentiment analysis task with no adaptation to the provided training corpus. Results, though far from the best runs, prove that the generic model is more robust as it achieves a more balanced evaluation for message polarity along the different test sets.
Resumo:
Everybody has to coordinate several tasks everyday, usually in a manual manner. Recently, the concept of Task Automation Services has been introduced to automate and personalize the task coordination problem. Several user centered platforms and applications have arisen in the last years, that let their users configure their very own automations based on third party services. In this paper, we propose a new system architecture for Task Automation Services in a heterogeneous mobile, smart devices, and cloud services environment. Our architecture is based on the novel idea to employ distributed Complex Event Processing to implement innovative mixed execution profiles. The major advantage of the approach is its ability to incorporate context-awareness and real-time coordination in Task Automation Services.
Resumo:
The paper presents a high accuracy fully analytical formulation to compute the miss distance and collision probability of two approaching objects following an impulsive collision avoidance maneuver. The formulation hinges on a linear relation between the applied impulse and the objects relative motion in the b-plane, which allows to formulate the maneuver optimization problem as an eigenvalue problem. The optimization criterion consists of minimizing the maneuver cost in terms of delta-V magnitude in order to either maximize collision miss distance or to minimize Gaussian collision probability. The algorithm, whose accuracy is verified in representative mission scenarios, can be employed for collision avoidance maneuver planning with reduced computational cost when compared to fully numerical algorithms.