924 resultados para Different effects
Resumo:
The high-temperature oxidation behavior of modified 304 austenitic stainless steels in a water vapor atmosphere was investigated. Samples were prepared by various thermo mechanical treatments to result in different grain sizes in the range 8-30 mu m. Similar I 3 pound grain boundary fraction was achieved to eliminate any grain-boundary characteristics effect. Samples were oxidized in an air furnace at 700 A degrees C with 20 % water vapor atmosphere. On the fine-grained sample, a uniform Cr2O3 layer was formed, which increased the overall oxidation resistance. Whereas on the coarse-grained sample, an additional Fe2O3 layer formed on the Cr-rich oxide layer, which resulted in a relatively high oxidation rate. In the fine-grained sample, grain boundaries act as rapid diffusion paths for Cr and provided enough Cr to form Cr2O3 oxide on the entire sample surface.
Resumo:
The effect of strain rate, (epsilon) over dot, and temperature, T, on the tension-compression asymmetry (TCA) in a dilute and wrought Mg alloy, AM30, over a temperature range that covers both twin accommodated deformation (below 250 degrees C in compression) as well as dislocation-mediated plasticity (above 250 degrees C) has been investigated. For this purpose, uniaxial tension and compression tests were conducted at T ranging from 25 to 400 degrees C with (epsilon) over dot varying between 10(-2) and 10 s(-1). In most of the cases, the stress-strain responses in tension and compression are distinctly different; with compression responses `concaving upward,' due to {10 (1) over bar2} tensile twinning at lower plastic strains followed by slip and strain hardening at higher levels of deformation, for T below 250 degrees C. This results in significant levels of TCA at T < 250 degrees C, reducing substantially at high temperatures. At T=150 and 250 degrees C, high (epsilon) over dot leads to high TCA, in particular at T=250 degrees C and (epsilon) over dot=10 s(-1), suggesting that twin-mediated plastic deformation takes precedence at high rates of loading even at sufficiently high T. TCA becomes negligible at T=350 degrees C; however at T=400 degrees C, as (epsilon) over dot increases TCA gets higher. Microscopy of the deformed samples, carried out by using electron back-scattered diffraction (EBSD), suggests that at T > 250 degrees C dynamic recrystallization begins between accompanied by reduction in the twinned fraction that contributes to the decrease of the TCA.
Resumo:
Multiferroic materials are characterized by simultaneous magnetic and ferroelectric ordering making them good candidates for magneto-electrical applications. We conducted thermal expansion and magnetostriction measurements in magnetic fields up to 14 T on perovskitic GdMnO3 by highresolution capacitive dilatometry in an effort to determine all longitudinal and transversal components of the magnetostriction tensor. Below the ordering temperature T (N) = 42 K, i.e., within the different complex (incommensurate or complex) antiferromagnetic phases, lattice distortions of up to 100 ppm have been found. Although no change of the lattice symmetry occurs, the measurements reveal strong magneto-structural phenomena, especially in the incommensurate sinusoidal antiferromagnetic phase. A strong anisotropy of the magnetoelastic properties was found, in good agreement with the type and propagation vector of the magnetic structure. We demonstrate that our capacitive dilatometry can detect lattice expansion effects and changes of the dielectric permittivity simultaneously because the sample is housed inside the capacitor. A separation of both effects is possible by shielding the sample. Dielectric transitions could be detected by this method and compared to the critical values of H and T in the magnetic phase diagram. Dielectric changes measured at 1 kHz excitation frequency are detected in GdMnO3 at about 180 K, and between 10 K and 25 K in the canted antiferromagnetic structure which is characterized by a complex magnetic order on both the Gd- and Mn-sites.
Resumo:
We describe here the rheological response of dense, slowly deforming granular materials to shear in a cylindrical Couette cell. All components of the stress on the outer cylinder are measured pointwise as a function of the depth, for different methods of construction of the bed that presumably lead to distinct fabrics. The static stress profiles for the different construction protocols are different, but a stress profile that is independent of construction history emerges when the granular column is sheared for sufficient time, in accord with the predictions of plasticity theories. However the qualitative features of the the stress profile under shear differs radically from the predictions of plasticity theories and data reported in earlier studies. We discuss a hypothesis for the anomalous stress profiles that was proposed recently by us, and the ways in which further experiments may to conducted to verify it.
Resumo:
We study the production of the lightest neutralinos in the process e(+)e(-) -> chi(0)(1)chi(0)(1)gamma in supersymmetric grand unified models for the International Linear Collider energies with longitudinally polarized beams. We consider cases where the standard model gauge group is unified into the grand unified gauge groups SU(5), or SO(10). We have carried out a comprehensive study of this process in the SU(5) and SO(10) grand unified theories which includes the QED radiative corrections. We compare and contrast the dependence of the signal cross section on the grand unified gauge group, and on the different representations of the grand unified gauge group, when the electron and positron beams are longitudinally polarized. To assess the feasibility of experimentally observing the radiative production process, we have also considered in detail the background to this process coming from the radiative neutrino production process e(+)e(-)-> nu(nu) over bar gamma with longitudinally polarized electron and positron beams. In addition we have also considered the supersymmetric background coming from the radiative production of scalar neutrinos in the process e(+)e(-) -> (nu) over tilde(nu) over tilde*gamma with longitudinally polarized beams. The process can be a major background to the radiative production of neutralinos when the scalar neutrinos decay invisibly.
Resumo:
The optical WDM systems are usually affected by the Four Wave Mixing effects. This paper examines the different frequency allocations in terms of FWM efficiency for CWDM, DWDM and for three various proposed modes.
Resumo:
Effects of fluctuations in habitat temperature (18-30 degrees) on mitochondrial respiratory behavior and oxidative metabolic responses in the euryhaline ectotherm Scylla serrate are not fully understood. In the present study, effects of different temperatures ranging from 12 to 40 degrees C on glutamate and succinate mediated mitochondrial respiration, respiratory control ratio (RCR), ATP generation rate, ratio for the utilization of phosphate molecules per atomic oxygen consumption (P/O), levels of lipid peroxidation and H2O2 in isolated gill mitochondria of S. serrata are reported. The pattern of variation in the studied parameters was similar for the two substrates at different temperatures. The values recorded for RCR ( >= 3) and P/O ratio (1.4-2.7) at the temperature range of 15-25 degrees C were within the normal range reported for other animals (3-10 for RCR and 1.5-3 for P/O). Values for P/O ratio, ATP generation rate and RCR were highest at 18 degrees C when compared to the other assay temperatures. However, at low and high extreme temperatures, i.e. at 12 and 40 degrees C, states III and IV respiration rates were not clearly distinguishable from each other indicating that mitochondria were completely uncoupled. Positive correlations were noticed between temperature and the levels of both lipid peroxidation and H2O2. It is inferred that fluctuations on either side of ambient habitat temperature may adversely influence mitochondria respiration and oxidative metabolism in S. serrata. The results provide baseline data to understand the impacts of acute changes in temperature on ectotherms inhabiting estuarine or marine environments. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Natural multispecies acoustic choruses such as the dusk chorus of a tropical rain forest consist of simultaneously signalling individuals of different species whose calls travel through a common shared medium before reaching their `intended' receivers. This causes masking interference between signals and impedes signal detection, recognition and localization. The levels of acoustic overlap depend on a number of factors, including call structure, intensity, habitat-dependent signal attenuation and receiver tuning. In addition, acoustic overlaps should also depend on caller density and the species composition of choruses, including relative and absolute abundance of the different calling species. In this study, we used simulations to examine the effects of chorus species relative abundance and caller density on the levels of effective heterospecific acoustic overlap in multispecies choruses composed of the calls of five species of crickets and katydids that share the understorey of a rain forest in southern India. We found that on average species-even choruses resulted in higher levels of effective heterospecific acoustic overlap than choruses with strong dominance structures. This effect was found consistently across dominance levels ranging from 0.4 to 0.8 for larger choruses of forty individuals. For smaller choruses of twenty individuals, the effect was seen consistently for dominance levels of 0.6 and 0.8 but not 0.4. Effective acoustic overlap (EAO) increased with caller density but the manner and extent of increase depended both on the species' call structure and the acoustic context provided by the composition scenario. The Phaloria sp. experienced very low levels of EAO and was highly buffered to changes in acoustic context whereas other species experienced high FAO across contexts or were poorly buffered. These differences were not simply predictable from call structures. These simulation-based findings may have important implications for acoustic biodiversity monitoring and for the study of acoustic masking interference in natural environments. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
G-Quadruplexes occupy important regulatory regions in the genome. DNA G-quadruplexes in the promoter regions and RNA quadruplexes in the UTRs (untranslated regions) have been individually studied and variously implicated at different regulatory levels of gene expression. However, the formation of G-quadruplexes in the sense and antisense strands and their corresponding roles in gene regulation have not been studied in much detail. In the present study, we have elucidated the effect of strand asymmetry in this context. Using biophysical methods, we have demonstrated the formation of stable G-quadruplex structure in vitro using CD and UV melting. Additionally, ITC was employed to demonstrate that a previously reported selective G-quadruplex ligand was able to bind and stabilize the G-quadruplex in the present sequence. Further, we have shown using reporter constructs that although the DNA G-quadruplex in either strand can reduce translation efficiency, transcriptional regulation differs when G-quadruplex is present in the sense or antisense strand. We demonstrate that the G-quadruplex motif in the antisense strand substantially inhibits transcription, while when in the sense strand, it does not affect transcription, although it does ultimately reduce translation. Further, it is also shown that the G-quadruplex stabilizing ligand can enhance this asymmetric transcription regulation as a result of the increased stabilization of the G-quadruplex.
Resumo:
As-prepared graphene oxide (GO) contains oxidative debris which can be washed using basic solutions. We present the isolation and characterization of these debris. Dynamic light scattering (DLS) is used to monitor the separation of the debris in various solvents in the presence of different protic and aprotic alkylamino bases. The study reveals that the debris are rich in carbonyl functional groups and water is an essential component for separation and removal of the debris from GO under oxidative reaction conditions.
Resumo:
Systematic structural perturbation has been used to fine-tune and understand the luminescence properties of three new 1,8-naphthalimides (NPIs) in solution and aggregates. The NPIs show blue emission in the solution state and their fluorescence quantum yields are dependent upon their molecular rigidity. In concentrated solutions of the NPIs, intermolecular interactions were found to quench the fluorescence due to the formation of excimers. In contrast, upon aggregation (in THF/H2O mixtures), the NPIs show aggregation-induced emission enhancement (AIEE). The NPIs also show moderately high solid-state emission quantum yields (ca. 10-12.7 %). The AIEE behaviour of the NPIs depends on their molecular rigidity and the nature of their intermolecular interactions. The NPIs 1-3 show different extents of intermolecular (pi-pi and C-H center dot center dot center dot O) interactions in their solid-state crystal structures depending on their substituents. Detailed photophysical, computational and structural investigations suggest that an optimal balance of structural flexibility and intermolecular communication is necessary for achieving AIEE characteristics in these NPIs.
Resumo:
Search of design spaces to generate solutions affects the design outcomes during conceptual design. This research aims to understand the different types of search that occurs during conceptual design and their effect on the design outcomes. Additionally, we study the effect of other factors, such as creativity, problem-solving style, and experience of designers, on the design outcomes. Two sets of design experiments, with experienced and novice designers, are used in this study. We find that designers employ twelve different types of searches during conceptual design for problem understanding, solution generation, and solution evaluation activities. Results also suggest that creativity is influenced positively by the type and amount of searches, duration of designing, and experience of designers.
Resumo:
When dropped, electronic packages often undergo failure by propagation of an interfacial crack in solder joints under a combination of tensile and shear loading. Hence, it is crucial to understand and predict the fracture behavior of solder joints under mixed-mode high-rate loading conditions. In this work, the effects of the loading conditions (strain rate and loading angle) and microstructure interfacial intermetallic compound (IMC) morphology and solder yield strength] on the mixed-mode fracture toughness of Sn-3.8 wt.%Ag-0.7 wt.%Cu solder joints sandwiched between two Cu substrates with electroless nickel immersion gold (ENIG) metallization have been studied, and compared with the fracture behavior of joints attached to bare Cu. Irrespective of the surface finish, the fracture toughness of the solder joints decreased monotonically with strain rate and mode-mixity, both resulting in increased fracture proportion through the interfacial IMC layer. Furthermore, the proportion of crack propagation through the interfacial IMC layer increased with increase in the thickness and the roughness of the interfacial IMC layer and the yield strength of the solder, resulting in a decrease in the fracture toughness of the joint. However, under most conditions, solder joints with ENIG finish showed higher resistance to fracture than joints attached directly to Cu substrates without ENIG metallization. Based on the experimental observations, a fracture mechanism map is constructed correlating the yield strength of the solder, the morphology and thickness of the interfacial IMC, and the fracture mechanisms as well as the fracture toughness values for different solder joints under mode I loading.
Resumo:
Experimental studies and atomistic simulations have shown that brittle metallic glasses fail by a cavitation mechanism whose origin has been traced to the presence of intrinsic atomic density fluctuations which give rise to weak zones with reduced yield strength. It has been shown recently through continuum analysis that the presence of these zones can lower the cavitation stress considerably under equibiaxial loading. The objective of the present work is to study the effect of the applied stress state on the cavitation behavior of such a heterogeneous plastic solid with distributed weak zones. To this end, 2D plane strain finite element simulations are performed by subjecting a unit cell containing a weak zone to different (biaxiality) stress ratios. The volume fraction and yield strength of the weak zone are varied over a wide range. The results show that unlike in a homogeneous plastic solid, the cavitation stress of the heterogeneous aggregate does not reduce appreciably as the stress ratio decreases from unity when the yield strength of the weak zone is low. It is found that a non-dimensional parameter characterizing the stress state prevailing in the weak zone and its yield properties uniquely control the cavitation stress. The nature of cavitation bifurcation may change from unstable bifurcation to the left at sufficiently low stress ratio to one involving snap cavitation at high stress ratio. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We carry out an extensive numerical study of the dynamics of spiral waves of electrical activation, in the presence of periodic deformation (PD) in two-dimensional simulation domains, in the biophysically realistic mathematical models of human ventricular tissue due to (a) ten-Tusscher and Panfilov (the TP06 model) and (b) ten-Tusscher, Noble, Noble, and Panfilov (the TNNPO4 model). We first consider simulations in cable-type domains, in which we calculate the conduction velocity theta and the wavelength lambda of a plane wave; we show that PD leads to a periodic, spatial modulation of theta and a temporally periodic modulation of lambda; both these modulations depend on the amplitude and frequency of the PD. We then examine three types of initial conditions for both TP06 and TNNPO4 models and show that the imposition of PD leads to a rich variety of spatiotemporal patterns in the transmembrane potential including states with a single rotating spiral (RS) wave, a spiral-turbulence (ST) state with a single meandering spiral, an ST state with multiple broken spirals, and a state SA in which all spirals are absorbed at the boundaries of our simulation domain. We find, for both TP06 and TNNPO4 models, that spiral-wave dynamics depends sensitively on the amplitude and frequency of PD and the initial condition. We examine how these different types of spiral-wave states can be eliminated in the presence of PD by the application of low-amplitude pulses by square- and rectangular-mesh suppression techniques. We suggest specific experiments that can test the results of our simulations.