13 resultados para Different effects
em CaltechTHESIS
Resumo:
The cerebellum is a major supraspinal center involved in the coordination of movement. The principal neurons of the cerebellar cortex, Purkinje cells, receive excitatory synaptic input from two sources: the parallel and climbing fibers. These pathways have markedly different effects: the parallel fibers control the rate of simple sodium spikes, while the climbing fibers induce characteristic complex spike bursts, which are accompanied by dendritic calcium transients and play a key role in regulating synaptic plasticity. While many studies using a variety of species, behaviors, and cerebellar regions have documented modulation in Purkinje cell activity during movement, few have attempted to record from these neurons in unrestrained rodents. In this dissertation, we use chronic, multi-tetrode recording in freely-behaving rats to study simple and complex spike firing patterns during locomotion and sleep. Purkinje cells discharge rhythmically during stepping, but this activity is highly variable across steps. We show that behavioral variables systematically influence the step-locked firing rate in a step-phase-dependent way, revealing a functional clustering of Purkinje cells. Furthermore, we find a pronounced disassociation between patterns of variability driven by the parallel and climbing fibers, as well as functional differences between cerebellar lobules. These results suggest that Purkinje cell activity not only represents step phase within each cycle, but is also shaped by behavior across steps, facilitating control of movement under dynamic conditions. During sleep, we observe an attenuation of both simple and complex spiking, relative to awake behavior. Although firing rates during slow wave sleep (SWS) and rapid eye movement sleep (REM) are similar, simple spike activity is highly regular in SWS, while REM is characterized by phasic increases and pauses in simple spiking. This phasic activity in REM is associated with pontine waves, which propagate into the cerebellar cortex and modulate both simple and complex spiking. Such a temporal coincidence between parallel and climbing fiber activity is known to drive plasticity at parallel fiber synapses; consequently, pontocerebellar waves may provide a mechanism for tuning synaptic weights in the cerebellum during active sleep.
Resumo:
In the first part of this thesis a study of the effect of the longitudinal distribution of optical intensity and electron density on the static and dynamic behavior of semiconductor lasers is performed. A static model for above threshold operation of a single mode laser, consisting of multiple active and passive sections, is developed by calculating the longitudinal optical intensity distribution and electron density distribution in a self-consistent manner. Feedback from an index and gain Bragg grating is included, as well as feedback from discrete reflections at interfaces and facets. Longitudinal spatial holeburning is analyzed by including the dependence of the gain and the refractive index on the electron density. The mechanisms of spatial holeburning in quarter wave shifted DFB lasers are analyzed. A new laser structure with a uniform optical intensity distribution is introduced and an implementation is simulated, resulting in a large reduction of the longitudinal spatial holeburning effect.
A dynamic small-signal model is then developed by including the optical intensity and electron density distribution, as well as the dependence of the grating coupling coefficients on the electron density. Expressions are derived for the intensity and frequency noise spectrum, the spontaneous emission rate into the lasing mode, the linewidth enhancement factor, and the AM and FM modulation response. Different chirp components are identified in the FM response, and a new adiabatic chirp component is discovered. This new adiabatic chirp component is caused by the nonuniform longitudinal distributions, and is found to dominate at low frequencies. Distributed feedback lasers with partial gain coupling are analyzed, and it is shown how the dependence of the grating coupling coefficients on the electron density can result in an enhancement of the differential gain with an associated enhancement in modulation bandwidth and a reduction in chirp.
In the second part, spectral characteristics of passively mode-locked two-section multiple quantum well laser coupled to an external cavity are studied. Broad-band wavelength tuning using an external grating is demonstrated for the first time in passively mode-locked semiconductor lasers. A record tuning range of 26 nm is measured, with pulse widths of typically a few picosecond and time-bandwidth products of more than 10 times the transform limit. It is then demonstrated that these large time-bandwidth products are due to a strong linear upchirp, by performing pulse compression by a factor of 15 to a record pulse widths as low 320 fs.
A model for pulse propagation through a saturable medium with self-phase-modulation, due to the a-parameter, is developed for quantum well material, including the frequency dependence of the gain medium. This model is used to simulate two-section devices coupled to an external cavity. When no self-phase-modulation is present, it is found that the pulses are asymmetric with a sharper rising edge, that the pulse tails have an exponential behavior, and that the transform limit is 0.3. Inclusion of self-phase-modulation results in a linear upchirp imprinted on the pulse after each round-trip. This linear upchirp is due to a combination of self-phase-modulation in a gain section and absorption of the leading edge of the pulse in the saturable absorber.
Resumo:
Cooperative director fluctuations in lipid bilayers have been postulated for many years. ^2H-NMR T_1^(-1), T_(1P)^(-1) , and T_2^(-1); measurements have been used identify these motions and to determine the origin of increased slow bilayer motion upon addition of unlike lipids or proteins to a pure lipid bilayer.
The contribution of cooperative director fluctuations to NMR relaxation in lipid bilayers has been expressed mathematically using the approach of Doane et al.^1 and Pace and Chan.^2 The T_2^(-1)’s of pure dimyristoyllecithin (DML) bilayers deuterated at the 2, 9 and 10, and all positions on both lipid hydrocarbon chains have been measured. Several characteristics of these measurements indicate the presence of cooperative director fluctuations. First of all, T_2^(-1) exhibits a linear dependence on S2/CD. Secondly, T_2^(-1) varies across the ^2H-NMR powder pattern as sin^2 (2, β), where , β is the angle between the average bilayer director and the external magnetic field. Furthermore, these fluctuations are restricted near the lecithin head group suggesting that the head group does not participate in these motions but, rather, anchors the hydrocarbon chains in the bilayer.
T_2^(-1)has been measured for selectively deuterated liquid crystalline DML hilayers to which a host of other lipids and proteins have been added. The T_2^(-1) of the DML bilayer is found to increase drastically when chlorophyll a (chl a) and Gramicidin A' (GA') are added to the bilayer. Both these molecules interfere with the lecithin head group spacing in the bilayer. Molecules such as myristic acid, distearoyllecithin (DSL), phytol, and cholesterol, whose hydrocarbon regions are quite different from DML but which have small,neutral polar head groups, leave cooperative fluctuations in the DML bilayer unchanged.
The effect of chl a on cooperative fluctuations in the DML bilayer has been examined in detail using ^2H-NMR T_1^(-1), T_(1P)^(-1) , and T_2^(-1); measurements. Cooperative fluctuations have been modelled using the continuum theory of the nematic state of liquid crystals. Chl a is found to decrease both the correlation length and the elastic constants in the DML bilayer.
A mismatch between the hydrophobic length of a lipid bilayer and that of an added protein has also been found to change the cooperative properties of the lecithin bilayer. Hydrophobic mismatch has been studied in a series GA' / lecithin bilayers. The dependence of 2H-NMR order parameters and relaxation rates on GA' concentration has been measured in selectively deuterated DML, dipalmitoyllecithin (DPL), and DSL systems. Order parameters, cooperative lengths, and elastic constants of the DML bilayer are most disrupted by GA', while the DSL bilayer is the least perturbed by GA'. Thus, it is concluded that the hydrophobic length of GA' best matches that of the DSL bilayer. Preliminary Raman spectroscopy and Differential Scanning Calorimetry experiments of GA' /lecithin systems support this conclusion. Accommodation of hydrophobic mismatch is used to rationalize the absence of H_(II) phase formation in GA' /DML systems and the observation of H_(II) phase in GA' /DPL and GA' /DSL systems.
1. J. W. Doane and D. L. Johnson, Chem. Phy3. Lett., 6, 291-295 (1970). 2. R. J. Pace and S. I. Chan, J. Chem. Phy3., 16, 4217-4227 (1982).
Resumo:
Part I
Studies of vibrational relaxation in excited electronic states of simple diatomic molecules trapped in solid rare-gas matrices at low temperatures are reported. The relaxation is investigated by monitoring the emission intensity from vibrational levels of the excited electronic state to vibrational levels of the ground electronic state. The emission was in all cases excited by bombardment of the doped rare-gas solid with X-rays.
The diatomics studied and the band systems seen are: N2, Vegard-Kaplan and Second Positive systems; O2, Herzberg system; OH and OD, A 2Σ+ - X2IIi system. The latter has been investigated only in solid Ne, where both emission and absorption spectra were recorded; observed fine structure has been partly interpreted in terms of slightly perturbed rotational motion in the solid. For N2, OH, and OD emission occurred from v' > 0, establishing a vibrational relaxation time in the excited electronic state of the order, of longer than, the electronic radiative lifetime. The relative emission intensity and decay times for different v' progressions in the Vegard-Kaplan system are found to depend on the rare-gas host and the N2 concentration, but are independent of temperature in the range 1.7°K to 30°K.
Part II
Static crystal field effects on the absorption, fluorescence, and phosphorescence spectra of isotopically mixed benzene crystals were investigated. Evidence is presented which demonstrate that in the crystal the ground, lowest excited singlet, and lowest triplet states of the guest deviate from hexagonal symmetry. The deviation appears largest in the lowest triplet state and may be due to an intrinsic instability of the 3B1u state. High resolution absorption and phospho- rescence spectra are reported and analyzed in terms of site-splitting of degenerate vibrations and orientational effects. The guest phosphorescence lifetime for various benzene isotopes in C6D6 and sym-C6H3D3 hosts is presented and discussed.
Resumo:
Three separate topics, each stimulated by experiments, are treated theoretically in this dessertation: isotopic effects of ozone, electron transfer at interfaces, and intramolecular directional electron transfer in a supramolecular system.
The strange mass-independent isotope effect for the enrichment of ozone, which has been a puzzle in the literature for some 20 years, and the equally puzzling unconventional strong mass-dependent effect of individual reaction rate constants are studied as different aspects of a symmetry-driven behavior. A statistical (RRKM-based) theory with a hindered-rotor transition state is used. The individual rate constant ratios of recombination reactions at low pressures are calculated using the theory involving (1) small deviation from the statistical density of states for symmetric isotopomers, and (2) weak collisions for deactivation of the vibrationally excited ozone molecules. The weak collision and partitioning among exit channels play major roles in producing the large unconventional isotope effect in "unscrambled" systems. The enrichment studies reflect instead the non-statistical effect in "scrambled" systems. The theoretical results of low-pressure ozone enrichments and individual rate constant ratios obtained from these calculations are consistent with the corresponding experimental results. The isotopic exchange rate constant for the reaction ^(16)O + ^(18)O ^(18)O→+ ^(16)O ^(18)O + ^(18)O provides information on the nature of a variationally determined hindered-rotor transition state using experimental data at 130 K and 300 K. Pressure effects on the recombination rate constant, on the individual rate constant ratios and on the enrichments are also investigated. The theoretical results are consistent with the experimental data. The temperature dependence of the enrichment and rate constant ratios is also discussed, and experimental tests are suggested. The desirability of a more accurate potential energy surface for ozone in the transition state region is also noted.
Electron transfer reactions at semiconductor /liquid interfaces are studied using a tight-binding model for the semiconductors. The slab method and a z-transform method are employed in obtaining the tight-binding electronic structures of semiconductors having surfaces. The maximum electron transfer rate constants at Si/viologen^(2-/+) and InP /Me_(2)Fc^(+/O) interfaces are computed using the tight-binding type calculations for the solid and the extended-Huckel for the coupling to the redox agent at the interface. These electron transfer reactions are also studied using a free electron model for the semiconductor and the redox molecule, where Bardeen's method is adapted to calculate the coupling matrix element between the molecular and semiconductor electronic states. The calculated results for maximum rate constant of the electron transfer from the semiconductor bulk states are compared with the experimentally measured values of Lewis and coworkers, and are in reasonable agreement, without adjusting parameters. In the case of InP /liquid interface, the unusual current vs applied potential behavior is additionally interpreted, in part, by the presence of surface states.
Photoinduced electron transfer reactions in small supramolecular systems, such as 4-aminonaphthalimide compounds, are interesting in that there are, in principle, two alternative pathways (directions) for the electron transfer. The electron transfer, however, is unidirectional, as deduced from pH-dependent fluorescence quenching studies on different compounds. The role of electronic coupling matrix element and the charges in protonation are considered to explain the directionality of the electron transfer and other various results. A related mechanism is proposed to interpret the fluorescence behavior of similar molecules as fluorescent sensors of metal ions.
Resumo:
Over the past few decades, ferromagnetic spinwave resonance in magnetic thin films has been used as a tool for studying the properties of magnetic materials. A full understanding of the boundary conditions at the surface of the magnetic material is extremely important. Such an understanding has been the general objective of this thesis. The approach has been to investigate various hypotheses of the surface condition and to compare the results of these models with experimental data. The conclusion is that the boundary conditions are largely due to thin surface regions with magnetic properties different from the bulk. In the calculations these regions were usually approximated by uniform surface layers; the spins were otherwise unconstrained except by the same mechanisms that exist in the bulk (i.e., no special "pinning" at the surface atomic layer is assumed). The variation of the ferromagnetic spinwave resonance spectra in YIG films with frequency, temperature, annealing, and orientation of applied field provided an excellent experimental basis for the study.
This thesis can be divided into two parts. The first part is ferromagnetic resonance theory; the second part is the comparison of calculated with experimental data in YIG films. Both are essential in understanding the conclusion that surface regions with properties different from the bulk are responsible for the resonance phenomena associated with boundary conditions.
The theoretical calculations have been made by finding the wave vectors characteristic of the magnetic fields inside the magnetic medium, and then combining the fields associated with these wave vectors in superposition to match the specified boundary conditions. In addition to magnetic boundary conditions required for the surface layer model, two phenomenological magnetic boundary conditions are discussed in detail. The wave vectors are easily found by combining the Landau-Lifshitz equations with Maxwell's equations. Mode positions are most easily predicted from the magnetic wave vectors obtained by neglecting damping, conductivity, and the displacement current. For an insulator where the driving field is nearly uniform throughout the sample, these approximations permit a simple yet accurate calculation of the mode intensities. For metal films this calculation may be inaccurate but the mode positions are still accurately described. The techniques necessary for calculating the power absorbed by the film under a specific excitation including the effects of conductivity, displacement current and damping are also presented.
In the second part of the thesis the properties of magnetic garnet materials are summarized and the properties believed associated with the two surface regions of a YIG film are presented. Finally, the experimental data and calculated data for the surface layer model and other proposed models are compared. The conclusion of this study is that the remarkable variety of spinwave spectra that arises from various preparation techniques and subsequent treatments can be explained by surface regions with magnetic properties different from the bulk.
Resumo:
Soft hierarchical materials often present unique functional properties that are sensitive to the geometry and organization of their micro- and nano-structural features across different lengthscales. Carbon Nanotube (CNT) foams are hierarchical materials with fibrous morphology that are known for their remarkable physical, chemical and electrical properties. Their complex microstructure has led them to exhibit intriguing mechanical responses at different length-scales and in different loading regimes. Even though these materials have been studied for mechanical behavior over the past few years, their response at high-rate finite deformations and the influence of their microstructure on bulk mechanical behavior and energy dissipative characteristics remain elusive.
In this dissertation, we study the response of aligned CNT foams at the high strain-rate regime of 102 - 104 s-1. We investigate their bulk dynamic response and the fundamental deformation mechanisms at different lengthscales, and correlate them to the microstructural characteristics of the foams. We develop an experimental platform, with which to study the mechanics of CNT foams in high-rate deformations, that includes direct measurements of the strain and transmitted forces, and allows for a full field visualization of the sample’s deformation through high-speed microscopy.
We synthesize various CNT foams (e.g., vertically aligned CNT (VACNT) foams, helical CNT foams, micro-architectured VACNT foams and VACNT foams with microscale heterogeneities) and show that the bulk functional properties of these materials are highly tunable either by tailoring their microstructure during synthesis or by designing micro-architectures that exploit the principles of structural mechanics. We also develop numerical models to describe the bulk dynamic response using multiscale mass-spring models and identify the mechanical properties at length scales that are smaller than the sample height.
The ability to control the geometry of microstructural features, and their local interactions, allows the creation of novel hierarchical materials with desired functional properties. The fundamental understanding provided by this work on the key structure-function relations that govern the bulk response of CNT foams can be extended to other fibrous, soft and hierarchical materials. The findings can be used to design materials with tailored properties for different engineering applications, like vibration damping, impact mitigation and packaging.
Resumo:
Although numerous theoretical efforts have been put forth, a systematic, unified and predictive theoretical framework that is able to capture all the essential physics of the interfacial behaviors of ions, such as the Hofmeister series effect, Jones-Ray effect and the salt effect on the bubble coalescence remain an outstanding challenge. The most common approach to treating electrostatic interactions in the presence of salt ions is the Poisson-Boltzmann (PB) theory. However, there are many systems for which the PB theory fails to offer even a qualitative explanation of the behavior, especially for ions distributed in the vicinity of an interface with dielectric contrast between the two media (like the water-vapor/oil interface). A key factor missing in the PB theory is the self energy of the ion.
In this thesis, we develop a self-consistent theory that treats the electrostatic self energy (including both the short-range Born solvation energy and the long-range image charge interactions), the nonelectrostatic contribution of the self energy, the ion-ion correlation and the screening effect systematically in a single framework. By assuming a finite charge spread of the ion instead of using the point-charge model, the self energy obtained by our theory is free of the divergence problems and gives a continuous self energy across the interface. This continuous feature allows ions on the water side and the vapor/oil side of the interface to be treated in a unified framework. The theory involves a minimum set of parameters of the ion, such as the valency, radius, polarizability of the ions, and the dielectric constants of the medium, that are both intrinsic and readily available. The general theory is first applied to study the thermodynamic property of the bulk electrolyte solution, which shows good agreement with the experiment result for predicting the activity coefficient and osmotic coefficient.
Next, we address the effect of local Born solvation energy on the bulk thermodynamics and interfacial properties of electrolyte solution mixtures. We show that difference in the solvation energy between the cations and anions naturally gives rise to local charge separation near the interface, and a finite Galvani potential between two coexisting solutions. The miscibility of the mixture can either increases or decreases depending on the competition between the solvation energy and translation entropy of the ions. The interfacial tension shows a non-monotonic dependence on the salt concentration: it increases linearly with the salt concentration at higher concentrations, and decreases approximately as the square root of the salt concentration for dilute solutions, which is in agreement with the Jones-Ray effect observed in experiment.
Next, we investigate the image effects on the double layer structure and interfacial properties near a single charged plate. We show that the image charge repulsion creates a depletion boundary layer that cannot be captured by a regular perturbation approach. The correct weak-coupling theory must include the self-energy of the ion due to the image charge interaction. The image force qualitatively alters the double layer structure and properties, and gives rise to many non-PB effects, such as nonmonotonic dependence of the surface energy on concentration and charge inversion. The image charge effect is then studied for electrolyte solutions between two plates. For two neutral plates, we show that depletion of the salt ions by the image charge repulsion results in short-range attractive and long-range repulsive forces. If cations and anions are of different valency, the asymmetric depletion leads to the formation of an induced electrical double layer. For two charged plates, the competition between the surface charge and the image charge effect can give rise to like- charge attraction.
Then, we study the inhomogeneous screening effect near the dielectric interface due to the anisotropic and nonuniform ion distribution. We show that the double layer structure and interfacial properties is drastically affected by the inhomogeneous screening if the bulk Debye screening length is comparable or smaller than the Bjerrum length. The width of the depletion layer is characterized by the Bjerrum length, independent of the salt concentration. We predict that the negative adsorption of ions at the interface increases linearly with the salt concentration, which cannot be captured by either the bulk screening approximation or the WKB approximation. For asymmetric salt, the inhomogeneous screening enhances the charge separation in the induced double layer and significantly increases the value of the surface potential.
Finally, to account for the ion specificity, we study the self energy of a single ion across the dielectric interface. The ion is considered to be polarizable: its charge distribution can be self-adjusted to the local dielectric environment to minimize the self energy. Using intrinsic parameters of the ions, such as the valency, radius, and polarizability, we predict the specific ion effect on the interfacial affinity of halogen anions at the water/air interface, and the strong adsorption of hydrophobic ions at the water/oil interface, in agreement with experiments and atomistic simulations.
The theory developed in this work represents the most systematic theoretical technique for weak-coupling electrolytes. We expect the theory to be more useful for studying a wide range of structural and dynamic properties in physicochemical, colloidal, soft-matter and biophysical systems.
Resumo:
When studying physical systems, it is common to make approximations: the contact interaction is linear, the crystal is periodic, the variations occurs slowly, the mass of a particle is constant with velocity, or the position of a particle is exactly known are just a few examples. These approximations help us simplify complex systems to make them more comprehensible while still demonstrating interesting physics. But what happens when these assumptions break down? This question becomes particularly interesting in the materials science community in designing new materials structures with exotic properties In this thesis, we study the mechanical response and dynamics in granular crystals, in which the approximation of linearity and infinite size break down. The system is inherently finite, and contact interaction can be tuned to access different nonlinear regimes. When the assumptions of linearity and perfect periodicity are no longer valid, a host of interesting physical phenomena presents itself. The advantage of using a granular crystal is in its experimental feasibility and its similarity to many other materials systems. This allows us to both leverage past experience in the condensed matter physics and materials science communities while also presenting results with implications beyond the narrower granular physics community. In addition, we bring tools from the nonlinear systems community to study the dynamics in finite lattices, where there are inherently more degrees of freedom. This approach leads to the major contributions of this thesis in broken periodic systems. We demonstrate the first defect mode whose spatial profile can be tuned from highly localized to completely delocalized by simply tuning an external parameter. Using the sensitive dynamics near bifurcation points, we present a completely new approach to modifying the incremental stiffness of a lattice to arbitrary values. We show how using nonlinear defect modes, the incremental stiffness can be tuned to anywhere in the force-displacement relation. Other contributions include demonstrating nonlinear breakdown of mechanical filters as a result of finite size, and the presents of frequency attenuation bands in essentially nonlinear materials. We finish by presenting two new energy harvesting systems based on our experience with instabilities in weakly nonlinear systems.
Resumo:
Nicotinic acetylcholine receptors (nAChRs) are pentameric, ligand-gated, cation channels found throughout the central and peripheral nervous system, whose endogenous ligand is acetylcholine, but which can also be acted upon by nicotine. The subunit compositions of nAChR determine their physiological and pharmacological properties, with different subunits expressed in different combinations or areas throughout the brain. The behavioral and physiological effects of nicotine are elicited by its agonistic and desensitizing actions selectively on neuronal nAChRs. The midbrain is of particular interest due to its population of nAChRs expressed on dopaminergic neurons, which are important for reward and reinforcement, and possibly contribute to nicotine dependence. The α6-subunit is found on dopaminergic neurons but very few other regions of the brain, making it an interesting drug target. We assayed a novel nicotinic agonist, called TI-299423 or TC299, for its possible selectivity for α6-containing nAChRs. Our goal was to isolate the role of α6-containing nAChRs in nicotine reward and reinforcement, and provide insight into the search for more effective smoking cessation compounds. This was done using a variety of in vitro and behavioral assays, aimed dually at understanding TI-299423’s exact mechanism of action and its downstream effects. Additionally, we looked at the effects of another compound, menthol, on nicotine reward. Understanding how reward is generated in the cholinergic system and how that is modulated by other compounds contributes to a better understand of our complex neural circuitry and provides insight for the future development of therapeutics.
Resumo:
This study investigates lateral mixing of tracer fluids in turbulent open-channel flows when the tracer and ambient fluids have different densities. Longitudinal dispersion in flows with longitudinal density gradients is investigated also.
Lateral mixing was studied in a laboratory flume by introducing fluid tracers at the ambient flow velocity continuously and uniformly across a fraction of the flume width and over the entire depth of the ambient flow. Fluid samples were taken to obtain concentration distributions in cross-sections at various distances, x, downstream from the tracer source. The data were used to calculate variances of the lateral distributions of the depth-averaged concentration. When there was a difference in density between the tracer and the ambient fluids, lateral mixing close to the source was enhanced by density-induced secondary flows; however, far downstream where the density gradients were small, lateral mixing rates were independent of the initial density difference. A dimensional analysis of the problem and the data show that the normalized variance is a function of only three dimensionless numbers, which represent: (1) the x-coordinate, (2) the source width, and (3) the buoyancy flux from the source.
A simplified set of equations of motion for a fluid with a horizontal density gradient was integrated to give an expression for the density-induced velocity distribution. The dispersion coefficient due to this velocity distribution was also obtained. Using this dispersion coefficient in an analysis for predicting lateral mixing rates in the experiments of this investigation gave only qualitative agreement with the data. However, predicted longitudinal salinity distributions in an idealized laboratory estuary agree well with published data.
Resumo:
Gaseous nitrogen and argon were injected into a primary stream of air moving at Mach 2.56. The gases were injected at secondary to primary total pressure ratios from 3.2 to 28.6 through four different nozzles. Two nozzles, one sonic and one supersonic (M = 3.26), injected normal to the primary stream; and two sonic nozzles injected at 45° angles to the primary flow, one injecting upstream and the other downstream. Data consisted of static pressure measurements on the wall near the injector, total pressure profiles in the wake of the injectant plume, and concentration measurements downstream of the flow. Scale parameters were calculated based upon an analytical model of the flow field and their validity verified by experimental results. These scale heights were used to compare normalized wall side forces for the different nozzles and to compare the mixing of the two streams.
Resumo:
The thesis is divided into two parts. Part I generalizes a self-consistent calculation of residue shifts from SU3 symmetry, originally performed by Dashen, Dothan, Frautschi, and Sharp, to include the effects of non-linear terms. Residue factorizability is used to transform an overdetermined set of equations into a variational problem, which is designed to take advantage of the redundancy of the mathematical system. The solution of this problem automatically satisfies the requirement of factorizability and comes close to satisfying all the original equations.
Part II investigates some consequences of direct channel Regge poles and treats the problem of relating Reggeized partial wave expansions made in different reaction channels. An analytic method is introduced which can be used to determine the crossed-channel discontinuity for a large class of direct-channel Regge representations, and this method is applied to some specific representations.
It is demonstrated that the multi-sheeted analytic structure of the Regge trajectory function can be used to resolve apparent difficulties arising from infinitely rising Regge trajectories. Also discussed are the implications of large collections of "daughter trajectories."
Two things are of particular interest: first, the threshold behavior in direct and crossed channels; second, the potentialities of Reggeized representations for us in self-consistent calculations. A new representation is introduced which surpasses previous formulations in these two areas, automatically satisfying direct-channel threshold constraints while being capable of reproducing a reasonable crossed channel discontinuity. A scalar model is investigated for low energies, and a relation is obtained between the mass of the lowest bound state and the slope of the Regge trajectory.