982 resultados para Diesel exhaust particles
Resumo:
A sensitive high-performance liquid chromatographic method has been developed for the quantitative determination of aminopyrine (AM) and its metabolite 4-aminoantipyrine (AAN). The method utilizes reverse-phase chromatography/amperometric detection with a glassy carbon electrode dispersed with alpha-arumina particles as the working electrode, on which the oxidation of AM and AAN was greatly improved compared with that on a bare glassy carbon electrode. As a result, the detection limit was as low as 1.4 ng for AM and 0.8 ng for AAN, and the calibration plots for the above compounds have wide linear ranges from 100 ng/mL to 100 mu g/mL and 60 ng/mL to 80 mu g/mL (for AM and AAN, respectively). The above method was applied for the detection of these materials in human urine with satisfactory results.
Resumo:
A layer of palladium particles was electrodeposited on a glassy carbon electrode. The dispersed Pd particles resulted in a large decrease in overvoltage for the electrochemical oxidation of H2O2 down to +0.4 V vs. Ag/AgCl, based on which a new kind of cholesterol sensor was fabricated. Cholesterol oxidase was immobilized on the Pd-dispersed electrode by cross-linking with glutaraldehyde and a layer of poly(o-phenylenediamine) (PPD) film was electropolymerized on the enzyme layer. The sensor shows a linear response in the concentration range 0.05-4.50 mmol l-1 with a rapid response of less than 20 s. The polymer film can prevent interference from uric acid and ascorbic acid and also increases the thermal stability of the sensor. The sensor can be used for 200 assays without an obvious decrease in activity.
Resumo:
In this paper, five types of chemically modified electrode (CMEs) prepared with the deposition of platinum particles on various surfaces of glassy carbon (GC) modified with cobalt porphyrin and Nafion(R) solution are characterized using the electron scanning microscope (SEM). Their activities in the four-electron reduction of dioxygen to water on the basis of their electrochemical data from cyclic voltammetric and rotating ring-disk electrode (RRDE) experiments are examined and compared. Platinum particles dispersed on the GC surface adsorbed with the cobalt porphyrin exhibit the highest activity for the electrocatalytic reduction of dioxygen. However it is interesting that the cobalt ion is lost from the center of the porphyrin ring during the preparation of the cobalt porphyrin + Nafion mixture solution, while the porphyrin ring still remains in the Nafion film, as shown by EDX analysis. The incorporation of the porphyrin may change the structure of the Nafion film into a looser form, since the platinum particles dispersed in the film are more readily exposed, resulting in more favourable mass transfer and higher activity for the electrocatalytic reduction of dioxygen.
Resumo:
CORROSION; WATER; SPECTROSCOPY; CHLORIDE; ZINC; NUCLEATION; INTERFACE; ELECTRODE; SURFACES; GROWTH
Resumo:
CORROSION; MECHANISM; WATER; ZINC
Resumo:
An effective nonlinear alternative-current (AC) response to granular nonlinear-composite with spherical inclusions embedded in a host medium under the action of an external AC field is investigated by using a perturbation approach. The local potentials of composite at higher harmonics are derived both in a region of local inclusion particles and in a local host region under the action of a sinusoidal field E-1 sin ω t + E-3 sin 3ω t. An effective nonlinear-response to composite and the relationship between the effective nonlinear-responses at the fundamental frequency and the third harmonics are also studied for the spherical inclusions in a dilute limit.
Resumo:
The effective dielectric response of graded spherical composites having general power-law gradient inclusions is investigated under a uniform applied electric field, where the dielectric gradation profile of the spherical inclusions is modeled by the equation epsilon(i) (r) = c(b+r)(k). Analytical solutions of the local electrical potentials are derived in terms of hyper-geometric function and the effective dielectric response of the graded composites is predicted in the dilute limit. From our result, the local potentials of graded spherical composites having both simple power-law dielectric profile epsilon(i)(r) = cr(k) and linear dielectric profile epsilon(i) (r) = c(b+r) are derived exactly by taking the limits b --> 0 and k --> 1, respectively. In the dilute limit, our exact result is used to test the validity of differential effective dipole approximation (DEDA) for estimating the effective response of graded spherical composites, and it is shown that the DEDA is in excellent agreement with exact result. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Effective dielectric responses of graded cylindrical composites are investigated when an external uniform field is applied to the composites. Considering linear random composites of cylindrical particles with a specific dielectric function, which varies along the radial direction of the particles, we have studied three cases of dielectric profiles: exponential function, linear and power-law profiles. For each case, the effective dielectric response of graded composites is given on the basis of exact solutions of the local potentials of composites in the dilute limit. For a larger volume fraction, we have proposed an effective medium approximation to estimate the effective dielectric response.
Resumo:
Suspended particulate matter (SPM), sediments and clams were collected at three sites in Jiaozhou Bay to assess the magnitude of trace metal pollution in the area. Metal concentrations in SPM (Cu: 40.11-203; Zn: 118-447; Pb: 50.1-132; Cd: 0.55-4.39; Cr: 147.6-288; Mn: 762-1670 mu g/g), sediments (Cu: 17.64-34.26; Zn: 80.79-110; Pb: 24.57-49.59; Cd: 0.099-0.324; Cr: 41.6-88.1; Mn: 343-520 mu g/g) and bivalves (Cu: 6.41-19.76; Zn: 35.5-85.5; Pb: 0.31-1.01; Cd: 0.51-0.67; Mn: 27.45-67.6 mu g/g) are comparable to those reported for other moderately polluted world environments. SPM showed a less clear pattern. Metal concentrations in sediments displayed a clear geographical trend with values increasing with proximity to major urban centers. The clams (on dry weight) showed a complex pattern due to the variability introduced by age-related factors. Cd showed an apparent reverse industrial trend with higher concentrations in clams collected at distant stations. Zn, Pb and Mn showed no clear geographical pattern, whereas Cu increased in the clams collected in the most industrialized area. In addition, the bioaccumulation factors (BAF) were calculated. The result indicated that the studied Ruditapes philippinarum in Jiaozhou Bay possessed different bioaccumulation capacities for Cd, Zn, Cu, Pb and Mn, and Cd, Zn had a relatively high assimilation of those metals from sediment particles. A significant relationship with clam age was observed for Zn (positive) and Cu (negative) suggesting different physiological requirements for both metals with age. Trace metal concentrations measured in the tissue of the investigated clam were in the range considered safe by the WHO for human use.
Resumo:
CoWO4 nano-particles were successfully synthesized at a low temperature of 270 degrees C by a molten salt method, and effects of such processing parameters as holding time and salt quantity on the crystallization and development Of CoWO4 crystallites were initially studied. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM). and photoluminescent spectra techniques (PL), respectively. Experimental results showed that the well-crystallized CoWO4 nano-particles with ca. 45 nm in diameter could be obtained at 270 degrees C for a holding time of 8 h with 6:1 mass ratio of the salt to CoWO4 precursor, and XRD analysis evidenced that the as-prepared sample was a pure monoclinic phase Of CoWO4 with wolframite structure. Their PL spectra revealed that the CoWO4 nano-particles displayed a very strong PL peak at 453 nm with the excitation wavelength of 230 nm, and PL properties of CoWO4 crystallites relied on their crystalline state, especially on their particle size. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nickel tungstate (NiWO4) nano-particles were successfully synthesized at low temperatures by a molten salt method, and characterized by Xray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet visible spectra techniques (UV-vis), respectively. The effects of calcining temperature and salt quantity on the crystallization and development of NiWO4 crystallites were studied. Experimental results showed that the well-crystallized NiWO4 nano-particles with about 30 nm in diameter could be prepared at 270 degrees C with 6:1 mass ratio of the salt to NiWO4 precursor. XRD analysis confirmed that the product was a pure monoclinic phase of NiWO4 with wolframite structure. UV-vis spectrum revealed that NiWO4 nano-particles had good light absorption properties in both ultraviolet and visible light region. (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Fe-B ultrafine amorphous alloy particles (UFAAP) were prepared by chemical reduction of Fe3+ with NaBHO4 and confirmed to be ultrafine amorphous particles by transmission electron microscopy and X-ray diffraction. The specific heat of the sample was measured by a high precision adiabatic calorimeter, and a differential scanning calorimeter was used for thermal stability analysis. A topological structure of Fe-B atoms is proposed to explain two crystallization peaks and a melting peak observed at T=600, 868 and 1645 K, respectively.
Resumo:
The variation of specific surface area and chemical reactivity of nano-KH particles treated at different temperatures has been studied, The BET surface area of nano-KH decreases with the increase of heat treatment temperature, while the chemical reactivity per unit surface increases steadily. These results indicate that the state of KH surface is changed after heat treatment. Large specific surface area of nano-KH is a major factor for its high chemical reactivity, nevertheless, the surface in an activated state with high surface energy is also an important factor for its high chemical reactivity. Nano-KH alone can polymerize styrene rapidly with the formation of polystyrene.