981 resultados para Developmental Regulation
Resumo:
The sense of touch relies on detection of mechanical stimuli by specialized mechanosensory neurons. The scarcity of molecular data has made it difficult to analyze development of mechanoreceptors and to define the basis of their diversity and function. We show that the transcription factor c-Maf/c-MAF is crucial for mechanosensory function in mice and humans. The development and function of several rapidly adapting mechanoreceptor types are disrupted in c-Maf mutant mice. In particular, Pacinian corpuscles, a type of mechanoreceptor specialized to detect high-frequency vibrations, are severely atrophied. In line with this, sensitivity to high-frequency vibration is reduced in humans carrying a dominant mutation in the c-MAF gene. Thus, our work identifies a key transcription factor specifying development and function of mechanoreceptors and their end organs.
Resumo:
The genes do not control everything that happens in a cell or an organism, because thermally induced molecular movements and conformation changes are beyond genetic control. The importance of uncontrolled events has been argued from the differences between isogenic organisms reared in virtually identical environments, but these might alternatively be attributed to subtle, undetected differences in the environment. The present review focuses on the uncontrolled events themselves in the context of the developing brain. These are considered at cellular and circuit levels because even if cellular physiology was perfectly controlled by the genes (which it is not), the interactions between different cells might still be uncoordinated. A further complication is that the brain contains mechanisms that buffer noise and others that amplify it. The final resultant of the battle between these contrary mechanisms is that developmental stochasticity is sufficiently low to make neurobehavioural defects uncommon, but a chance component of neural development remains. Thus, our brains and behaviour are not entirely determined by a combination of genes-plus-environment.
Resumo:
ABSTRACT : Genetic approach in the sleep field is at the beginning of its wide expansion. Transitions between sleep and wakefulness, and the maintenance of these states are driven by complex neurobiologic mechanisms with reciprocal interactions. Impairment in both transitions and maintenance of behavioral states leads to debilitating conditions. The major symptom being excessive daytime sleepiness, characterizing most sleep disorders but also a wide variety of psychiatric and neurologic disorders, as well as the elderly. Until now, most wake-promoting drugs available directly (e.g., amphetamines and possibly modafinil) or indirectly (e.g., caffeine) provokes dopamine release which is believed to influence the abuse potential of these drugs. The effects of genetic components were assessed here, on drug-induced wakefulness and age-related sleep changes in three inbred mouse strains [AKR/J, C57BL/6J, DBA/2J] that differ in their major sleep phenotypes. Three wake-promoting drugs were used; d-amphetamine, a classical stimulant, modafinil, the most widely-prescribed stimulant, and YKP-10A, a novel wake-promoting agent with antidepressant proprieties. Electrical activity (Electroencephalogram) and gene expression of the brain were assessed and indicate a highly genotype-dependant response to wake promotion and subsequent recovery sleep. Aging effects on sleep-wake regulation were also strongly influenced by genetic determinants. By assessing the age-dependant effects at several time points (from 3 months to 2 years old mice), we found a strong genetic effect on vigilance states. These studies demonstrate a critical role for genetic factors neglected till now in the fields of pharmacology and aging effects on vigilance states.
Resumo:
Here we discuss life-history evolution from the perspective of adaptive phenotypic plasticity, with a focus on polyphenisms for somatic maintenance and survival. Polyphenisms are adaptive discrete alternative phenotypes that develop in response to changes in the environment. We suggest that dauer larval diapause and its associated adult phenotypes in the nematode (Caenorhabditis elegans), reproductive dormancy in the fruit fly (Drosophila melanogaster) and other insects, and the worker castes of the honey bee (Apis mellifera) are examples of what may be viewed as the polyphenic regulation of somatic maintenance and survival. In these and other cases, the same genotype can--depending upon its environment--express either of two alternative sets of life-history phenotypes that differ markedly with respect to somatic maintenance, survival ability, and thus life span. This plastic modulation of somatic maintenance and survival has traditionally been underappreciated by researchers working on aging and life history. We review the current evidence for such adaptive life-history switches and their molecular regulation and suggest that they are caused by temporally and/or spatially varying, stressful environments that impose diversifying selection, thereby favoring the evolution of plasticity of somatic maintenance and survival under strong regulatory control. By considering somatic maintenance and survivorship from the perspective of adaptive life-history switches, we may gain novel insights into the mechanisms and evolution of aging.
Resumo:
Functional brain imaging studies show that in certain brain regions glucose utilization exceeds oxygen consumption, indicating the predominance of aerobic glycolysis. In this issue, Goyal et al. (2014) report that this metabolic profile is associated with an enrichment in the expression of genes involved in synaptic plasticity and remodeling processes.
Resumo:
Neuropeptide Y (NPY) is a key modulator of the autonomic nervous system playing pivotal roles in cardiovascular and neuronal functions. In this study, we assessed the cellular localization and gene expression of NPY in rat kidneys. We also examined the relationship between NPY gene expression and renin in two rat models of hypertension (two-kidney, one-clip renal hypertension (2K1C), and deoxycorticosterone-salt-induced hypertension (DOCA-salt)) characterized by a similar blood pressure elevation. In situ hybridization and immunohistochemistry, using anti-NPY or anti-C-flanking peptide of NPY (CPON) antibodies, showed that NPY transcript and protein were colocalized in the tubules of rat kidneys. During experimental hypertension, NPY mRNA was decreased in both kidneys of the 2K1C animals, but not in the kidney of DOCA-salt rats. In 2K1C rats, renal NPY content was also decreased. The difference in NPY gene expression between 2K1C rats (a high renin model of hypertension) and DOCA-salt rats (a low renin model of hypertension) suggests that circulating angiotensin II plays a role in local renal NPY gene expression and that the elevated blood pressure per se is not the primary factor responsible for the control of NPY gene expression in the kidney.
Resumo:
Why mating types exist at all is subject to much debate. Among hypotheses, mating types evolved to control organelle transmission during sexual reproduction, or to prevent inbreeding or same-clone mating. Here I review data from a diversity of taxa (including ciliates, algae, slime molds, ascomycetes, and basidiomycetes) to show that the structure and function of mating types run counter the above hypotheses. I argue instead for a key role in triggering developmental switches. Genomes must fulfill a diversity of alternative programs along the sexual cycle. As a haploid gametophyte, an individual may grow vegetatively (through haploid mitoses), or initiate gametogenesis and mating. As a diploid sporophyte, similarly, it may grow vegetatively (through diploid mitoses) or initiate meiosis and sporulation. Only diploid sporophytes (and not haploid gametophytes) should switch on the meiotic program. Similarly, only haploid gametophytes (not sporophytes) should switch on gametogenesis and mating. And they should only do so when other gametophytes are ready to do the same in the neighborhood. As argued here, mating types have evolved primarily to switch on the right program at the right moment.
Resumo:
BACKGROUND: The human herpes simplex virus (HSV) host cell factor HCF-1 is a transcriptional coregulator that associates with both histone methyl- and acetyltransferases, and a histone deacetylase and regulates cell proliferation and division. In HSV-infected cells, HCF-1 associates with the viral protein VP16 to promote formation of a multiprotein-DNA transcriptional activator complex. The ability of HCF proteins to stabilize this VP16-induced complex has been conserved in diverse animal species including Drosophila melanogaster and Caenorhabditis elegans suggesting that VP16 targets a conserved cellular function of HCF-1. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the role of HCF proteins in animal development, we have characterized the effects of loss of the HCF-1 homolog in C. elegans, called Ce HCF-1. Two large hcf-1 deletion mutants (pk924 and ok559) are viable but display reduced fertility. Loss of Ce HCF-1 protein at reduced temperatures (e.g., 12 degrees C), however, leads to a high incidence of embryonic lethality and early embryonic mitotic and cytokinetic defects reminiscent of mammalian cell-division defects upon loss of HCF-1 function. Even when viable, however, at normal temperature, mutant embryos display reduced levels of phospho-histone H3 serine 10 (H3S10P), a modification implicated in both transcriptional and mitotic regulation. Mammalian cells with defective HCF-1 also display defects in mitotic H3S10P status. CONCLUSIONS/SIGNIFICANCE: These results suggest that HCF-1 proteins possess conserved roles in the regulation of cell division and mitotic histone phosphorylation.
Resumo:
Abstract : The human body is composed of a huge number of cells acting together in a concerted manner. The current understanding is that proteins perform most of the necessary activities in keeping a cell alive. The DNA, on the other hand, stores the information on how to produce the different proteins in the genome. Regulating gene transcription is the first important step that can thus affect the life of a cell, modify its functions and its responses to the environment. Regulation is a complex operation that involves specialized proteins, the transcription factors. Transcription factors (TFs) can bind to DNA and activate the processes leading to the expression of genes into new proteins. Errors in this process may lead to diseases. In particular, some transcription factors have been associated with a lethal pathological state, commonly known as cancer, associated with uncontrolled cellular proliferation, invasiveness of healthy tissues and abnormal responses to stimuli. Understanding cancer-related regulatory programs is a difficult task, often involving several TFs interacting together and influencing each other's activity. This Thesis presents new computational methodologies to study gene regulation. In addition we present applications of our methods to the understanding of cancer-related regulatory programs. The understanding of transcriptional regulation is a major challenge. We address this difficult question combining computational approaches with large collections of heterogeneous experimental data. In detail, we design signal processing tools to recover transcription factors binding sites on the DNA from genome-wide surveys like chromatin immunoprecipitation assays on tiling arrays (ChIP-chip). We then use the localization about the binding of TFs to explain expression levels of regulated genes. In this way we identify a regulatory synergy between two TFs, the oncogene C-MYC and SP1. C-MYC and SP1 bind preferentially at promoters and when SP1 binds next to C-NIYC on the DNA, the nearby gene is strongly expressed. The association between the two TFs at promoters is reflected by the binding sites conservation across mammals, by the permissive underlying chromatin states 'it represents an important control mechanism involved in cellular proliferation, thereby involved in cancer. Secondly, we identify the characteristics of TF estrogen receptor alpha (hERa) target genes and we study the influence of hERa in regulating transcription. hERa, upon hormone estrogen signaling, binds to DNA to regulate transcription of its targets in concert with its co-factors. To overcome the scarce experimental data about the binding sites of other TFs that may interact with hERa, we conduct in silico analysis of the sequences underlying the ChIP sites using the collection of position weight matrices (PWMs) of hERa partners, TFs FOXA1 and SP1. We combine ChIP-chip and ChIP-paired-end-diTags (ChIP-pet) data about hERa binding on DNA with the sequence information to explain gene expression levels in a large collection of cancer tissue samples and also on studies about the response of cells to estrogen. We confirm that hERa binding sites are distributed anywhere on the genome. However, we distinguish between binding sites near promoters and binding sites along the transcripts. The first group shows weak binding of hERa and high occurrence of SP1 motifs, in particular near estrogen responsive genes. The second group shows strong binding of hERa and significant correlation between the number of binding sites along a gene and the strength of gene induction in presence of estrogen. Some binding sites of the second group also show presence of FOXA1, but the role of this TF still needs to be investigated. Different mechanisms have been proposed to explain hERa-mediated induction of gene expression. Our work supports the model of hERa activating gene expression from distal binding sites by interacting with promoter bound TFs, like SP1. hERa has been associated with survival rates of breast cancer patients, though explanatory models are still incomplete: this result is important to better understand how hERa can control gene expression. Thirdly, we address the difficult question of regulatory network inference. We tackle this problem analyzing time-series of biological measurements such as quantification of mRNA levels or protein concentrations. Our approach uses the well-established penalized linear regression models where we impose sparseness on the connectivity of the regulatory network. We extend this method enforcing the coherence of the regulatory dependencies: a TF must coherently behave as an activator, or a repressor on all its targets. This requirement is implemented as constraints on the signs of the regressed coefficients in the penalized linear regression model. Our approach is better at reconstructing meaningful biological networks than previous methods based on penalized regression. The method is tested on the DREAM2 challenge of reconstructing a five-genes/TFs regulatory network obtaining the best performance in the "undirected signed excitatory" category. Thus, these bioinformatics methods, which are reliable, interpretable and fast enough to cover large biological dataset, have enabled us to better understand gene regulation in humans.
Resumo:
A procedure to culture Xenopus laevis hepatocytes that allows the cells in primary culture to be subjected to gene transfer experiments has been developed. The cultured cells continue to present tissue-specific markers such as expression of the albumin gene or estrogen-controlled vitellogenin gene expression, which are both restricted to liver. Two efficient and reproducible gene transfer procedures have been adapted to the Xenopus hepatocytes, namely lipofection and calcium phosphate-mediated precipitation. The transcription of transfected reporter genes controlled by estrogen-, glucocorticoid- or peroxisome proliferator-response elements was stimulated by endogenous or co-transfected receptor in a ligand-dependent manner. Furthermore, the expression of a reporter gene under the control of the entire promoter of the vitellogenin B1 gene mimicked the expression of the chromosomal vitellogenin gene with respect to basal and estrogen-induced activity. Thus, this culture-transfection system will prove very useful to study the regulation of genes expressed in the liver under the control of various hormones or xenobiotics.
Resumo:
The bleeding disorder Bernard-Soulier syndrome (BSS) is caused by mutations in the genes coding for the platelet glycoprotein GPIb/IX receptor. The septin SEPT5 is important for active membrane movement such as vesicle trafficking and exocytosis in non-dividing cells (i.e. platelets, neurons). We report on a four-year-old boy with a homozygous deletion comprising not only glycoprotein Ibβ (GP1BB) but also the SEPT5 gene, located 5' to GP1BB. He presented with BSS, cortical dysplasia (polymicrogyria), developmental delay, and platelet secretion defect. The homozygous deletion of GP1BB and SEPT5, which had been identified by PCR analyses, was confirmed by Southern analyses and denaturing HPLC (DHPLC). The parents were heterozygous for this deletion. Absence of GPIbβ and SEPT5 proteins in the patient's platelets was illustrated using transmission electron microscopy. Besides decreased GPIb/IX expression, flow cytometry analyses revealed impaired platelet granule secretion. Because the bleeding disorder was extremely severe, the boy received bone marrow transplantation (BMT) from a HLA-identical unrelated donor. After successful engraftment of BMT, he had no more bleeding episodes. Interestingly, also his mental development improved strikingly after BMT. This report describes for the first time a patient with SEPT5 deficiency presenting with cortical dysplasia (polymicrogyria), developmental delay, and platelet secretion defect.
Resumo:
This work carries out an empirical evaluation of the impact of the main mechanism for regulating the prices of medicines in the UK on a variety ofpharmaceutical price indices. The empirical evidence shows that the overall impact of the rate of return cap appears to have been slight or even null, and in any case that the impact would differ across therapeutic areas. These empiricalfindings suggest that the price regulation has managed to encourage UK-based firms¿ diversification in many therapeutic areas
Resumo:
Glioblastoma multiforme (GBM) is the most malignant variant of human glial tumors. A prominent feature of this tumor is the occurrence of necrosis and vascular proliferation. The regulation of glial neovascularization is still poorly understood and the characterization of factors involved in this process is of major clinical interest. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine released by leukocytes and by a variety of cells outside of the immune system. Recent work has shown that MIF may function to regulate cellular differentiation and proliferation in normal and tumor-derived cell lines, and may also contribute to the neovascularization of tumors. Our immunohistological analysis of MIF distribution in GBM tissues revealed the strong MIF protein accumulation in close association with necrotic areas and in tumor cells surrounding blood vessels. In addition, MIF expression was frequently associated with the presence of the tumor-suppressor gene p53. To substantiate the concept that MIF might be involved in the regulation of angiogenesis in GBM, we analyzed the MIF gene and protein expression under hypoxic and hypoglycemic stress conditions in vitro. Northern blot analysis showed a clear increase of MIF mRNA after hypoxia and hypoglycemia. We could also demonstrate that the increase of MIF transcripts on hypoxic stress can be explained by a profound transcriptional activation of the MIF gene. In parallel to the increase of MIF transcripts, we observed a significant rise in extracellular MIF protein on angiogenic stimulation. The data of our preliminary study suggest that the up-regulation of MIF expression during hypoxic and hypoglycemic stress might play a critical role for the neovascularization of glial tumors.
Resumo:
The increasing incidence of children identified and diagnosed with Autism Spectrum Disorders (ASD) and other developmental disabilities (DD) poses a major challenge to Title V and other programs as they try to meet the diverse and sometimes complex needs of these children. However, those state that have initiated coordinated efforts to meet the needs of these children cross systems have had the opportunity to form and/or strengthen relationships with new partners. In addition, these coordinated efforts will allow states to develop new policies, programs and financing mechanisms addressing the health of children with ASD, which may also strengthen the system of care for all Children and Youth with Special Health Care Needs.