943 resultados para Developers of Java system
Resumo:
Conferência: 39th Annual Conference of the IEEE Industrial-Electronics-Society (IECON), Vienna, Austria, Nov 10-14, 2013
Resumo:
This paper presents a differential evolution heuristic to compute a solution of a system of nonlinear equations through the global optimization of an appropriate merit function. Three different mutation strategies are combined to generate mutant points. Preliminary numerical results show the effectiveness of the presented heuristic.
Resumo:
The higher education system in Europe is currently under stress and the debates over its reform and future are gaining momentum. Now that, for most countries, we are in a time for change, in the overall society and the whole education system, the legal and political dimensions have gained prominence, which has not been followed by a more integrative approach of the problem of order, its reform and the issue of regulation, beyond the typical static and classical cost-benefit analyses. The two classical approaches for studying (and for designing the policy measures of) the problem of the reform of the higher education system - the cost-benefit analysis and the legal scholarship description - have to be integrated. This is the argument of our paper that the very integration of economic and legal approaches, what Warren Samuels called the legal-economic nexus, is meaningful and necessary, especially if we want to address the problem of order (as formulated by Joseph Spengler) and the overall regulation of the system. On the one hand, and without neglecting the interest and insights gained from the cost-benefit analysis, or other approaches of value for money assessment, we will focus our study on the legal, social and political aspects of the regulation of the higher education system and its reform in Portugal. On the other hand, the economic and financial problems have to be taken into account, but in a more inclusive way with regard to the indirect and other socio-economic costs not contemplated in traditional or standard assessments of policies for the tertiary education sector. In the first section of the paper, we will discuss the theoretical and conceptual underpinning of our analysis, focusing on the evolutionary approach, the role of critical institutions, the legal-economic nexus and the problem of order. All these elements are related to the institutional tradition, from Veblen and Commons to Spengler and Samuels. The second section states the problem of regulation in the higher education system and the issue of policy formulation for tackling the problem. The current situation is clearly one of crisis with the expansion of the cohorts of young students coming to an end and the recurrent scandals in private institutions. In the last decade, after a protracted period of extension or expansion of the system, i. e., the continuous growth of students, universities and other institutions are competing harder to gain students and have seen their financial situation at risk. It seems that we are entering a period of radical uncertainty, higher competition and a new configuration that is slowly building up is the growth in intensity, which means upgrading the quality of the higher learning and getting more involvement in vocational training and life-long learning. With this change, and along with other deep ones in the Portuguese society and economy, the current regulation has shown signs of maladjustment. The third section consists of our conclusions on the current issue of regulation and policy challenge. First, we underline the importance of an evolutionary approach to a process of change that is essentially dynamic. A special attention will be given to the issues related to an evolutionary construe of policy analysis and formulation. Second, the integration of law and economics, through the notion of legal economic nexus, allows us to better define the issues of regulation and the concrete problems that the universities are facing. One aspect is the instability of the political measures regarding the public administration and on which the higher education system depends financially, legally and institutionally, to say the least. A corollary is the lack of clear strategy in the policy reforms. Third, our research criticizes several studies, such as the one made by the OECD in late 2006 for the Ministry of Science, Technology and Higher Education, for being too static and neglecting fundamental aspects of regulation such as the logic of actors, groups and organizations who are major players in the system. Finally, simply changing the legal rules will not necessary per se change the behaviors that the authorities want to change. By this, we mean that it is not only remiss of the policy maker to ignore some of the critical issues of regulation, namely the continuous non-respect by academic management and administrative bodies of universities of the legal rules that were once promulgated. Changing the rules does not change the problem, especially without the necessary debates form the different relevant quarters that make up the higher education system. The issues of social interaction remain as intact. Our treatment of the matter will be organized in the following way. In the first section, the theoretical principles are developed in order to be able to study more adequately the higher education transformation with a modest evolutionary theory and a legal and economic nexus of the interactions of the system and the policy challenges. After describing, in the second section, the recent evolution and current working of the higher education in Portugal, we will analyze the legal framework and the current regulatory practices and problems in light of the theoretical framework adopted. We will end with some conclusions on the current problems of regulation and the policy measures that are discusses in recent years.
Resumo:
In the past years, Software Architecture has attracted increased attention by academia and industry as the unifying concept to structure the design of complex systems. One particular research area deals with the possibility of reconfiguring architectures to adapt the systems they describe to new requirements. Reconfiguration amounts to adding and removing components and connections, and may have to occur without stopping the execution of the system being reconfigured. This work contributes to the formal description of such a process. Taking as a premise that a single formalism hardly ever satisfies all requirements in every situation, we present three approaches, each one with its own assumptions about the systems it can be applied to and with different advantages and disadvantages. Each approach is based on work of other researchers and has the aesthetic concern of changing as little as possible the original formalism, keeping its spirit. The first approach shows how a given reconfiguration can be specified in the same manner as the system it is applied to and in a way to be efficiently executed. The second approach explores the Chemical Abstract Machine, a formalism for rewriting multisets of terms, to describe architectures, computations, and reconfigurations in a uniform way. The last approach uses a UNITY-like parallel programming design language to describe computations, represents architectures by diagrams in the sense of Category Theory, and specifies reconfigurations by graph transformation rules.
Resumo:
This paper studies the dynamical properties of a system with distributed backlash and impact phenomena. This means that it is considered a chain of masses that interact with each other solely by means of backlash and impact phenomena. It is observed the emergence of non-linear phenomena resembling those encountered in the Fermi-Pasta-Ulam problem.
Resumo:
Discrete time control systems require sample- and-hold circuits to perform the conversion from digital to analog. Fractional-Order Holds (FROHs) are an interpolation between the classical zero and first order holds and can be tuned to produce better system performance. However, the model of the FROH is somewhat hermetic and the design of the system becomes unnecessarily complicated. This paper addresses the modelling of the FROHs using the concepts of Fractional Calculus (FC). For this purpose, two simple fractional-order approximations are proposed whose parameters are estimated by a genetic algorithm. The results are simple to interpret, demonstrating that FC is a useful tool for the analysis of these devices.
Resumo:
This paper investigates the use of multidimensional scaling in the evaluation of fractional system. Several algorithms are analysed based on the time response of the closed loop system under the action of a reference step input signal. Two alternative performance indices, based on the time and frequency domains, are tested. The numerical experiments demonstrate the feasibility of the proposed visualization method.
Resumo:
Dragonflies show unique and superior flight performances than most of other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper, it is presented an adaptive scheme controlling a nonlinear model inspired in a dragonfly-like robot. It is proposed a hybrid adaptive (HA) law for adjusting the parameters analyzing the tracking error. At the current stage of the project it is considered essential the development of computational simulation models based in the dynamics to test whether strategies or algorithms of control, parts of the system (such as different wing configurations, tail) as well as the complete system. The performance analysis proves the superiority of the HA law over the direct adaptive (DA) method in terms of faster and improved tracking and parameter convergence.
Resumo:
Sleep-states are emerging as a first-class design choice in energy minimization. A side effect of this is that the release behavior of the system is affected and subsequently the preemption relations between tasks. In a first step we have investigated how the behavior in terms of number of preemptions of tasks in the system is changed at runtime, using an existing procrastination approach, which utilizes sleepstates for energy savings purposes. Our solution resulted in substantial savings of preemptions and we expect from even higher yields for alternative energy saving algorithms. This work is intended to form the base of future research, which aims to bound the number of preemptions at analysis time and subsequently how this may be employed in the analysis to reduced the amount of system utilization, which is reserved to account for the preemption delay.
Resumo:
Most research work on WSNs has focused on protocols or on specific applications. There is a clear lack of easy/ready-to-use WSN technologies and tools for planning, implementing, testing and commissioning WSN systems in an integrated fashion. While there exists a plethora of papers about network planning and deployment methodologies, to the best of our knowledge none of them helps the designer to match coverage requirements with network performance evaluation. In this paper we aim at filling this gap by presenting an unified toolset, i.e., a framework able to provide a global picture of the system, from the network deployment planning to system test and validation. This toolset has been designed to back up the EMMON WSN system architecture for large-scale, dense, real-time embedded monitoring. It includes network deployment planning, worst-case analysis and dimensioning, protocol simulation and automatic remote programming and hardware testing tools. This toolset has been paramount to validate the system architecture through DEMMON1, the first EMMON demonstrator, i.e., a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.
Resumo:
Embedded real-time systems often have to support the embedding system in very different and changing application scenarios. An aircraft taxiing, taking off and in cruise flight is one example. The different application scenarios are reflected in the software structure with a changing task set and thus different operational modes. At the same time there is a strong push for integrating previously isolated functionalities in single-chip multicore processors. On such multicores the behavior of the system during a mode change, when the systems transitions from one mode to another, is complex but crucial to get right. In the past we have investigated mode change in multiprocessor systems where a mode change requires a complete change of task set. Now, we present the first analysis which considers mode changes in multicore systems, which use global EDF to schedule a set of mode independent (MI) and mode specific (MS) tasks. In such systems, only the set of MS tasks has to be replaced during mode changes, without jeopardizing the schedulability of the MI tasks. Of prime concern is that the mode change is safe and efficient: i.e. the mode change needs to be performed in a predefined time window and no deadlines may be missed as a function of the mode change.
Resumo:
We consider the problem of scheduling a multi-mode real-time system upon identical multiprocessor platforms. Since it is a multi-mode system, the system can change from one mode to another such that the current task set is replaced with a new task set. Ensuring that deadlines are met requires not only that a schedulability test is performed on tasks in each mode but also that (i) a protocol for transitioning from one mode to another is specified and (ii) a schedulability test for each transition is performed. We propose two protocols which ensure that all the expected requirements are met during every transition between every pair of operating modes of the system. Moreover, we prove the correctness of our proposed algorithms by extending the theory about the makespan determination problem.
Resumo:
In this paper the viability of an integrated wavelength optical filter and photodetector for visible light communication (VLC) is discussed. The proposed application uses indoor warm light lamps lighting accomplished by ultra-bright light-emitting diodes (LEDs) pulsed at frequencies higher than the ones perceived by the human eye. The system was analyzed at two different wavelengths in the visible spectrum (430 nm and 626 nm) with variable optical intensities. The signals were transmitted into free space and measured using a multilayered photodetector based on a-SiC:H/a-Si:H. The detector works as an optical filter with controlled wavelength sensitivity through the use of optical bias. The output photocurrent was measured for different optical intensities of the transmitted optical signal and the extent of each signal was tested. The influence of environmental fluorescent lighting was also analysed in order to test the strength of the system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
This paper presents a systemic modeling for a PV system integrated into an electric grid. The modeling includes models for a DC-DC boost converter and a DC-AC two-level inverter. Classical or fuzzy PI controllers with pulse width modulation by space vector modulation associated with sliding mode control is used for controlling the PV system and power factor control is introduced at the output of the system. Comprehensive performance simulation studies are carried out with the modeling of the DC-DC boost converter followed by a two-level power inverter in order to compare the performance with the experimental results obtained during in situ operation with three commercial inverters. Also, studies are carried out to assess the quality of the energy injected into the electric grid in terms of harmonic distortion. Finally, conclusions regarding the integration of the PV system into the electric grid are presented. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fractional calculus (FC) is being used in several distinct areas of science and engineering, being recognized its ability to yield a superior modelling and control in many dynamical systems. This article illustrates the application of FC in the area of robot control. A Fractional Order PDμ controller is proposed for the control of an hexapod robot with 3 dof legs. It is demonstrated the superior performance of the system by using the FC concepts.