912 resultados para Design Build Project Delivery System


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les biofilms bactériens sont composés d’organismes unicellulaires vivants au sein d’une matrice protectrice, formée de macromolécules naturelles. Des biofilms non désirés peuvent avoir un certain nombre de conséquences néfastes, par exemple la diminution du transfert de chaleur dans les échangeurs de chaleurs, l’obstruction de membranes poreuses, la contamination des surfaces coques de navires, etc. Par ailleurs, les bactéries pathogènes qui prolifèrent dans un biofilm posent également un danger pour la santé s’ils croissent sur des surfaces médicales synthétiques comme des implants biomédicaux, cathéters ou des lentilles de vue. De plus, la croissance sur le tissu naturel par certaines souches des bactéries peut être fatale, comme Pseudomonas aeruginosa dans les poumons. Cependant, la présence de biofilms reste difficile à traiter, car les bactéries sont protégées par une matrice extracellulaire. Pour tenter de remédier à ces problèmes, nous proposons de développer une surface antisalissure (antifouling) qui libère sur demande des agents antimicrobiens. La proximité et la disposition du système de relargage placé sous le biofilm, assureront une utilisation plus efficace des molécules antimicrobiennes et minimiseront les effets secondaires de ces dernières. Pour ce faire, nous envisageons l’utilisation d’une couche de particules de silice mésoporeuses comme agents de livraison d’agents antimicrobiens. Les nanoparticules de silice mésoporeuses (MSNs) ont démontré un fort potentiel pour la livraison ciblée d’agents thérapeutiques et bioactifs. Leur utilisation en nano médecine découle de leurs propriétés de porosité intéressantes, de la taille et de la forme ajustable de ces particules, de la chimie de leur surface et leur biocompatibilité. Ces propriétés offrent une flexibilité pour diverses applications. De plus, il est possible de les charger avec différentes molécules ou biomolécules (de tailles variées, allant de l’ibuprofène à l’ARN) et d’exercer un contrôle précis des paramètres d’adsorption et des cinétiques de relargage (désorption). Mots Clés : biofilms, nanoparticules de silice mésoporeuses, microfluidique, surface antisalissure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge of direct and diffuse solar radiation in the area is vital importance for the use of solar energy, since it is a prerequesite information for the assessment and design of solar energy system. The work presented here focus on calculation and plotting of contours values of direct and diffuse solar radiation maps based on sixty two scattered radiometric stations nation wide. In the plotting of these contours experimental and predicted values are used, these are compared with the period of dry and rainy season into the six main climate regions of Costa Rica: Central Valley, North Pacific, Central Pacific, South Pacific, North Zone and Caribbean Region. The observed daily mean levels of direct solar radiation oscillate between 6.1 and 10.1 MJ/m2 with higher values in the North Pacific, western part of the Central Valley and in the tops of the highest mountains. The lowest values agree with the North Zone and the Caribbean Region. The highest values of diffuse solar radiation agree with the North Zone and the South Pacific. It is observed an increase of 40% of the direct radiation during dry season months.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negli ultimi decenni i settori farmaceutico e cosmeceutico hanno aumentato costantemente gli investimenti nella ricerca, in modo da garantire soluzioni terapeutiche ad uno spettro di patologie più ampio possibile. È emersa quindi la necessità di migliorare la veicolazione e l’efficacia dei farmaci, ovvero di sviluppare “Drug Delivery Systems” innovativi. Kerline srl si è affacciata a questo specifico mercato, proponendo l’utilizzo di un materiale cheratinoso, estratto da lana e solubile in ambiente acquoso, per la produzione di sistemi micro e nanoparticellari caricati con composti lipofili. Durante lo svolgimento del tirocinio, sono state ottimizzate le procedure di estrazione di due diverse forme di cheratina, una ad alto peso molecolare e una idrolizzata. Queste sono state poi caricate con alcuni principi attivi (acido azelaico, α-tocoferolo acetato e tioconazolo) e le particelle ottenute sono state studiate tramite varie tecniche (DLS/PALS, SEM, Spettroscopia FTIR-ATR, UV-Vis e NMR). Complessivamente, le sospensioni colloidali ottenute sono dotate di buona stabilità sia nel tempo che dal punto di vista termico e mostrano quindi l’ottima compatibilità della cheratina con composti di varia natura.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scope of this study is to design an automatic control system and create an automatic x-wire calibrator for a facility named Plane Air Tunnel; whose exit creates planar jet flow. The controlling power state as well as automatic speed adjustment of the inverter has been achieved. Thus, the wind tunnel can be run with respect to any desired speed and the x-wire can automatically be calibrated at that speed. To achieve that, VI programming using the LabView environment was learned, to acquire the pressure and temperature, and to calculate the velocity based on the acquisition data thanks to a pitot-static tube. Furthermore, communication with the inverter to give the commands for power on/off and speed control was also done using the LabView VI coding environment. The connection of the computer to the inverter was achieved by the proper cabling using DAQmx Analog/Digital (A/D) input/output (I/O). Moreover, the pressure profile along the streamwise direction of the plane air tunnel was studied. Pressure tappings and a multichannel pressure scanner were used to acquire the pressure values at different locations. Thanks to that, the aerodynamic efficiency of the contraction ratio was observed, and the pressure behavior was related to the velocity at the exit section. Furthermore, the control of the speed was accomplished by implementing a closed-loop PI controller on the LabView environment with and without using a pitot-static tube thanks to the pressure behavior information. The responses of the two controllers were analyzed and commented on by giving suggestions. In addition, hot wire experiments were performed to calibrate automatically and investigate the velocity profile of a turbulent planar jet. To be able to analyze the results, the physics of turbulent planar jet flow was studied. The fundamental terms, the methods used in the derivation of the equations, velocity profile, shear stress behavior, and the effect of vorticity were reviewed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Currently excessive fossil fuel consumption has become a serious problem. People are searching for new solutions of energy production and there are several options to obtain alternative sources of energy without further devastating the already destroyed environment. One of these solutions is growing microalgae, from which biodiesel can be obtained. The microalgae production is a growing business because of its many useful compounds. In order to collect these compounds microalgae must first be harvested and then dried. Nowadays the solutions used for drying use too much energy and therefore are too expensive and not sustainable. The goal of this project, one of the possible choices during the EPS@ISEP 2013 Spring, was to develop a solar microalgae dryer. The multinational team involved in its development was composed of five students, from distinct countries and fields of study, and was the responsible for designing a solar microalgae dryer prototype for the microalgae laboratory of the chemical engineering department at ISEP, suitable for future tests and incorporating control process (in order not to destroy the microalgae during the drying process). The solar microalgae dryer was built to work as a distiller that gets rid of the excess water from the microalgae suspension. This paper presents a possible solution for this problem, the steps to create the device to harvest the microalgae by drying them with the use of solar energy (also used as an energy source for the solar dryer control system), the technologies used to build the solar microalgae dryer, and the benefits it presents compared to current solutions. It also presents the device from the ethical and sustainable viewpoint. Such alternative to already existing methods is competitive as far as energy usage is concerned.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (M.S. in Irrigation)--University of California, Berkeley, 1916.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): K.3.1, K.3.2.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents experimental results of the communication performance evaluation of a prototype ZigBee-based patient monitoring system commissioned in an in-patient floor of a Portuguese hospital (HPG – Hospital Privado de Guimar~aes). Besides, it revisits relevant problems that affect the performance of nonbeacon-enabled ZigBee networks. Initially, the presence of hidden-nodes and the impact of sensor node mobility are discussed. It was observed, for instance, that the message delivery ratio in a star network consisting of six wireless electrocardiogram sensor devices may decrease from 100% when no hidden-nodes are present to 83.96% when half of the sensor devices are unable to detect the transmissions made by the other half. An additional aspect which affects the communication reliability is a deadlock condition that can occur if routers are unable to process incoming packets during the backoff part of the CSMA-CA mechanism. A simple approach to increase the message delivery ratio in this case is proposed and its effectiveness is verified. The discussion and results presented in this paper aim to contribute to the design of efficient networks,and are valid to other scenarios and environments rather than hospitals.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents a project consisting on the development of an Intelligent Tutoring System, for training and support concerning the development of electrical installation projects to be used by electrical engineers, technicians and students. One of the major goals of this project is to devise a teaching model based on Intelligent Tutoring techniques, considering not only academic knowledge but also other types of more empirical knowledge, able to achieve successfully the training of electrical installation design.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Electrical activity is extremely broad and distinct, requiring by one hand, a deep knowledge on rules, regulations, materials, equipments, technical solutions and technologies and assistance in several areas, as electrical equipment, telecommunications, security and efficiency and rational use of energy, on the other hand, also requires other skills, depending on the specific projects to be implemented, being this knowledge a characteristic that belongs to the professionals with relevant experience, in terms of complexity and specific projects that were made.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The Information and Communication Technology (ICT) provide new strategies for disseminating information and new communication models in order to change attitudes and human behaviour concerning to education. Nowadays the internet is crucial as a means of communication and information sharing. To education or tutorship will be required to use ICT, supported on the internet, to establish the communication of teacher-student and student-student, disseminating the content of the subjects, and as a way of teaching and learning process. This paper presents an intelligent tutor that aims to be a tool to support teaching and learning in the field of the electrical engineering project.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The goal of this project, one of the proposals of the EPS@ISEP 2014 Spring, was to develop an Aquaponics System. Over recent years Aquaponics systems have received increased attention due to its possibilities in helping reduce strain on resources within 1st and 3rd world countries. Aquaponics is the combination of Hydroponics and Aquaculture and mimics a natural environment in order to successfully apply and enhance the understanding of natural cycles within an indoor process. By using this knowledge of natural cycles it was possible to create a system with the capabilities similar to that of a natural environment with the benefits of electronic adaptions to enhance the overall efficiency of the system. The multinational team involved in its development was composed of five students, from five countries and fields of study. This paper covers their solution, involving overall design, the technology involved and the benefits it could bring to the current market. The team was able to achieve the final rendered Computer Aided Design (CAD) drawings, successfully performed all the electronic testing, and designed a solution under budget. Furthermore, the solution presented was deeply studied from the sustainability viewpoint and the team also developed a product specific marketing plan. Finally, the students involved in this project obtained new knowledge and skills.