935 resultados para Dentifrice, fluoride
Resumo:
BnSP-7, a Lys49 myotoxic phospholipase A, homologue from Bothrops neuwiedi pauloensis venom, was structurally and functionally characterized. Several biological activities were assayed and compared with those of the chemically modified toxin involving specific amino acid residues, the cDNA produced from the total RNA by RT-PCR contained approximately 400 bp which codified its 121 amino acid residues with a calculated pi and molecular weight of 8.9 and 13,727, respectively. Its amino acid sequence showed strong similarities with several Lys49 phospholipase A, homologues from other Bothrops sp, venoms. By affinity chromatography and gel diffusion, it was demonstrated that heparin formed a complex with BnSP-7, held at least in part by electrostatic interactions. BnSP-7 displayed bactericidal activity and promoted the blockage of the neuromuscular contraction of the chick, biventer cervicis muscle. In addition to its in vivo myotoxic and edema-inducing activity, it disrupted artificial membranes, Both BnSP-7 and the crude venom released creatine kinase from the mouse gastrocnemius muscle and induced the development of a dose-dependent edema. His, Tyr, and Lys residues of the toxin were chemically modified by 4-bromophhenacyl bromide (BPB), 2-nitrobenzenesulfonyl fluoride (NBSF), and acetic anhydride (AA), respectively. Cleavage of its N-terminal octapeptide was achieved with cyanogen bromide (CNBr), the bactericidal action of BnSP-7 on Escherichia coli was almost completely abolished by acetylation or cleavage of the N-terminal octapeptide, the neuromuscular effect induced by BnSP-7 was completely inhibited by heparin, BPB, acetylation, and CNBr treatment. The creatine kinase releasing and edema-inducing effects were partially inhibited by heparin or modification by BPB and almost completely abolished by acetylation or cleavage of the N-terminal octapeptide, the rupture of liposomes by BnSP-7 and crude venom was dose and temperature dependent. Incubation of BnSP-7 with EDTA did not change this effect, suggesting a Ca2+-independent membrane lytic activity. BnSP-7 cross-reacted with antibodies raised against B. moojeni (MjTX-II), B. jararacussu (BthTX-I), and B. asper (Basp-II) myotoxins as well as against the C-terminal peptide (residues 115-129) from Basp-II. (C) 2000 Academic Press.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Different secondary caries models may present different results. The purpose of this study was to compare different in vitro secondary caries models, evaluating the obtained results by polarized-light microscopy (PLM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Standardized human enamel specimens (n = 12) restored with different materials (Z250 conventional composite resin-CRZ, Freedom polyacid-modified composite resin-CRF, Vitremer resin-modified glass-ionomer-GIV, and Fuji IX conventional glass-ionomer cement-GIF) were submitted to microbiological (MM) or chemical caries models (CM). The control group was not submitted to any caries model. For MM, specimens were immersed firstly in sucrose broth inoculated with Streptococcus mutans ATCC 35688, incubated at 37 degrees C/5% CO(2) for 14 days and then in remineralizing solution for 14 days. For CM, specimens were submitted to chemical pH-cycling. Specimens were ground, submitted to PLM and then were dehydrated, gold-sputtered and submitted to SEM and EDS. Results were statistically analyzed by Kruskall-Wallis and Student-Newman-Keuls tests (alpha = 0.05). No differences between in vitro caries models were found. Morphological differences in enamel demineralization were found between composite resin and polyacid-modified composite resin (CRZ and CRF) and between the resin-modified glass-ionomer and the glass-ionomer cement (GIF and GIV). GIF showed higher calcium concentration and less demineralization, differing from the other materials. In conclusion, the glass-ionomer cement showed less caries formation under both in vitro caries models evaluated. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 90B: 635-640, 2009
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Quando qualquer instrumento abrasiona ou corta a dentina, produz na superfície uma camada de lama dentinária ou smear layer. Dependendo do agente de união indicado em Odontologia adesiva, há a necessidade ou não da remoção da camada de lama da superfície dentinária. Com a finalidade de verificar a ação de diferentes substâncias para a limpeza dentinária, utilizamos 20 dentes pré-molares superiores íntegros, mantidos em soro fisiológico, nos quais as coroas foram seccionadas ao meio no sentido mésio-distal. Com instrumento diamantado, removeu-se o esmalte da porção vestibular e da porção lingual da coroa e, com uma broca carbide cilíndrica lisa nº 56, cortou-se aproximadamente 1 mm de dentina com alta rotação sob abundante refrigeração ar/água, para produzir a camada de lama dentinária. em seguida, essa superfície foi tratada com diferentes substâncias e lavada por 30 segundos com spray ar/água. No controle, foi simplesmente utilizado o spray ar/água. Os espécimes foram montados em suportes metálicos, preparados e visualizados no MEV-DSM 950 da Zeiss, em aumentos que variaram de 100 a 5.000 vezes. Os materiais que mais removeram a camada de lama foram, em ordem crescente: 1. spray ar/água; 2. fluoreto de sódio 2%; 3. associação alternada de Dakin/Tergensol; 4. água oxigenada 3%; 5. jateamento com óxido de alumínio 50 mm; 6. flúor acidulado 1,27%; 7. ácido poliacrílico 25%; 8. ácido fosfórico 10%.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dental fluorosis is a developmental disturbance of dental enamel, caused by successive exposures to high concentrations of fluoride during tooth development, leading to enamel with lower mineral content and increased porosity. The severity of dental fluorosis depends on when and for how long the overexposure to fluoride occurs, the individual response, weight, degree of physical activity, nutritional factors and bone growth. The risk period for esthetic changes in permanent teeth is between 20 and 30 months of age. The recommended level for daily fluoride intake is 0.05 - 0.07 mg F/Kg/day, which is considered of great help in preventing dental caries, acting in remineralization. A daily intake above this safe level leads to an increased risk of dental fluorosis. Currently recommended procedures for diagnosis of fluorosis should discriminate between symmetrical and asymmetrical and/or discrete patterns of opaque defects. Fluorosis can be prevented by having an adequate knowledge of the fluoride sources, knowing how to manage this issue and therefore, avoid overexposure.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective. The aim of this study was to assess the enamel microhardness treated with three in-office bleaching agents, containing 35% hydrogen peroxide with different acidity. Materials and methods. Bovine incisors were divided into three groups that received the following bleaching agents: Whiteness HP, Total Bleach and Opalescence Xtra. Three gel applications/10-min each, totaling 30-min of bleaching treatment, were made on the teeth and activated with a blue LED (1000 mW/470 nm) combined to a LASER (120 mW/795 nm) device (Easy Bleach-Clean Line). Vickers hardness (VH) was evaluated at baseline and after the bleaching procedure. The values of Hardness loss [HNL] (% reduction) were calculated. The two-sample t-test was used for comparison of the HNL of the three bleaching products (5% level of significance). Results. The Opalescence Xtra, which had the lowest pH value (pH = 4.30), showed a significant increase of HNL when compared with Total Bleach bleaching agent, which had the highest pH value (pH = 6.62). Conclusions. The 35% hydrogen peroxide bleaching agents resulted in a reduction in surface enamel microhardness and bleaching with the most acid agent resulted in a significant enamel hardness loss compared to the less acid agent (4.30 vs 6.62). Strategies proposed to reduce the enamel loss after bleaching treatment may include the use of daily fluoride therapy, mouth rinsing (fluoride, milk and sodium bicarbonate solution), fluoride/bicarbonate dentifrices without abrasives, do not toothbrush immediately after bleaching, fluorides and calcium add to bleaching agents.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this paper is to compare the fluoride-releasing and mechanical properties of an experimental luting glass ionomer cement, which has a modified composition and a commercial luting cement. The experimental powder was obtained by sol-gel process and then, it was used to prepare the experimental cements. The properties of cement pastes, such as setting time and working time, microhardness and diametral tensile strength were determined. Fluoride release from GICs was evaluated at time intervals of 1, 7, 14, 21 and 28 days in deionized water. Atomic force microscopy (AFM) analyses showed that the surface of the experimental cements is more homogeneous than commercial GICs. The mechanical properties and the measure of liberation of fluoride of the two cements were influenced by ratio powder:liquid and chemical composition of the precursor powders. Experimental cements released less fluoride than commercial cements. However, this liberation was more constant during the analyzed period. Thus, the results obtained in this study indicated that the composition of the experimental powder modified by the niobium can lead the formation of the polysalt matrix with good mechanical properties. In other words, we can say that experimental powder offered considerable promise for exploitation in dental field.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The molar single ion activity coefficient (y(F)) of fluoride ions was determined at 25 degrees C and ionic strengths between 0.100 and 3.00 mol L(-1) NaClO(4) using an ion-selective electrode. The activity coefficient dependency on ionic strength was determined to be Phi(F) = log y(F) = 0.2315I-0.041I(2). The function Phi(F)(I), combined with functions obtained in previous work for copper (Phi(Cu)) and hydrogen (Phi(H)), allowed us to make the estimation of the stoichiometric and thermodynamic protonation constants of some halides and pseudo-halides as well as the formation constants of some pseudo-halides and fluoride 1:1 bivalent cation complexes. The calculation procedure proposed in this paper is consistent with critically-selected experimental data. It was demonstrated that it is possible to use Phi(F)(I) for predicting the thermodynamic equilibrium parameters independently of Pearson's hardness of acids and bases.