1000 resultados para Density Topology
Resumo:
The mechanics of failure for elastic-brittle lattice materials is reviewed. Closed-form expressions are summarized for fracture toughness as a function of relative density for a wide range of periodic lattices. A variety of theoretical and numerical approaches has been developed in the literature and in the main the predictions coincide for any given topology. However, there are discrepancies and the underlying reasons for these are highlighted. The role of imperfections at the cell wall level can be accounted for by Weibull analysis. Nevertheless, defects can also arise on the meso-scale in the form of misplaced joints, wavy cell walls and randomly distributed missing cell walls. These degrade the macroscopic fracture toughness of the lattice. © 2010 Springer Science+Business Media B.V.
Resumo:
Gallium nitride (GaN) has a bright future in high voltage device owing to its remarkable physical properties and the possibility of growing heterostructures on silicon substrates. GaN High Electron Mobility Transistors (HEMTs) are expected to make a strong impact in off line applications and LED drives. However, unlike in silicon-based power devices, the on-state resistance of HEMT devices is hugely influenced by donor and acceptor traps at interfaces and in the bulk. This study focuses on the influence of donor traps located at the top interface between the semiconductor layer and the silicon nitride on the 2DEG density. It is shown through TCAD simulations and analytical study that the 2DEG charge density has an 'S' shape variation with two distinctive 'flat' regions, wherein it is not affected by the donor concentration, and one linear region. wherein the channel density increases proportionally with the donor concentration. We also show that the upper threshold value of the donor concentration within this 'S' shape increases significantly with the AIGaN thickness and the Al mole fraction and is highly affected by the presence of a thin GaN cap layer. © 2013 IEEE.
Resumo:
Carbon fiber reinforced polymer (CFRP) composite sandwich panels with hybrid foam filled CFRP pyramidal lattice cores have been assembled from a carbon fiber braided net, 3D woven face sheets and various polymeric foams, and infused with an epoxy resin using a vacuum assisted resin transfer process. Sandwich panels with a fixed CFRP truss mass have been fabricated using a variety of closed cell polymer and syntactic foams, resulting in core densities ranging from 44-482kgm-3. The through thickness and in-plane shear modulus and strength of the cores increased with increasing foam density. The use of low compressive strength foams within the core was found to result in a significant reduction in the compressive strength contributed by the CFRP trusses. X-ray tomography led to the discovery that the trusses develop an elliptical cross-section shape during pressure assisted resin transfer. The ellipticity of the truss cross-sections increased, and the lattice contribution to the core strength decreased as the foam density was reduced. Micromechanical modeling was used to investigate the relationships between the mechanical properties and volume fractions of the core materials and truss topology of the hybrid core. The specific strength and moduli of the hybrid cores lay between those of the CFRP lattices and foams used to fabricate them. However, their volumetric and gravimetric energy absorptions significantly exceeded those of the materials from which they were fabricated. They compare favorably with other lightweight energy absorbing materials and structures. © 2013.
Resumo:
The electronic structure of vanadium sesquioxide V2O3 in its different phases has been calculated using the screened exchange hybrid density functional. The hybrid functional accurately reproduces the experimental electronic properties of all three phases, the paramagnetic metal (PM) phase, the anti-ferromagnetic insulating phase, and the Cr-doped paramagnetic insulating (PI) phase. We find that a fully relaxed supercell model of the Cr-doped PI phase based on the corundum structure has a monoclinic-like local strain around the substitutional Cr atoms. This is found to drive the PI-PM transition, consistent with a Peierls-Mott transition. The PI phase has a calculated band gap of 0.15 eV, in good agreement with experiment.
Resumo:
This paper presents a critical comparison of static and switching performance of commercially available 1.2 kV SiC BJTs, MOSFETs and JFETs with 1.2 kV Si IGBTs. The experiments conducted are mainly focussed on investigating the temperature dependence of device performance. As an emerging commercial device, special emphasis is placed on SiC BJTs. The experimental data indicate that the SiC BJTs have relatively smaller conduction, off-state and turn-off switching losses, in comparison to the other devices. Furthermore, SiC BJTs have demonstrated much higher static current gain values in comparison to their silicon counterparts, thereby minimising driver losses. Based on the results, the suitability of SiC devices for high power density applications has been discussed. © 2013 IEEE.
Resumo:
The flame surface density approach to the modeling of premixed turbulent combustion is well established in the context of Reynolds-averaged simulations. For the future, it is necessary to consider large-eddy simulation (LES), which is likely to offer major advantages in terms of physical accuracy, particularly for unsteady combustion problems. LES relies on spatial filtering for the removal of unresolved phenomena whose characteristic length scales are smaller than the computational grid scale. Thus, there is a need for soundly based physical modeling at the subgrid scales. The aim of this paper is to explore the usefulness of the flame surface density concept as a basis for LES modeling of premixed turbulent combustion. A transport equation for the filtered flame surface density is presented, and models are proposed for unclosed terms. Comparison with Reynolds-averaged modeling is shown to reveal some interesting similarities and differences. These were exploited together with known physics and statistical results from experiment and from direct numerical stimulation in order to gain insight and refine the modeling. The model has been implemented in a combustion LES code together with standard models for scalar and momentum transport. Computational results were obtained for a simple three-dimensional flame propagation test problem, and the relative importance of contributing terms in the modeled equation for flame surface density was assessed. Straining and curvature are shown to have a major influence at both the resolved and subgrid levels.
Resumo:
We used a cyclic reactive ion etching (RIE) process to increase the Co catalyst density on a cobalt disilicide (CoSi2) substrate for carbon nanotube (CNT) growth. Each cycle of catalyst formation consists of a room temperature RIE step and an annealing step at 450 °C. The RIE step transfers the top-surface of CoSi2 into cobalt fluoride; while the annealing reduces the fluoride into metallic Co nanoparticles. We have optimized this cyclic RIE process and determined that the catalyst density can be doubled in three cycles, resulting in a final CNT shell density of 6.6 × 10 11 walls·cm-2. This work demonstrates a very effective approach to increase the CNT density grown directly on silicides. © 2014 AIP Publishing LLC.
Resumo:
Segregating the dynamics of gate bias induced threshold voltage shift, and in particular, charge trapping in thin film transistors (TFTs) based on time constants provides insight into the different mechanisms underlying TFTs instability. In this Letter we develop a representation of the time constants and model the magnitude of charge trapped in the form of an equivalent density of created trap states. This representation is extracted from the Fourier spectrum of the dynamics of charge trapping. Using amorphous In-Ga-Zn-O TFTs as an example, the charge trapping was modeled within an energy range of ΔEt 0.3 eV and with a density of state distribution as Dt(Et-j)=Dt0exp(-ΔEt/ kT)with Dt0 = 5.02 × 1011 cm-2 eV-1. Such a model is useful for developing simulation tools for circuit design. © 2014 AIP Publishing LLC.
Resumo:
Specimens of the calanoid copepod, Leptodiaptomus minutus, collected in June 1994 in oligotrophic: north temperate Crystal Lake, were infested with the stalked ciliate Epistylis lacustris. E. lacustris was highly specific to L. minutus and no other coexisting zooplankters were infested. Excluding nauplii, nearly 70% of copepods carried 1-20 ciliates, although the maximum load was as high as 250 ciliates. A lower percentage of nauplii were infested by the ciliate; those that were infested had a lower ciliate load than other copepod stages. Infestation by ciliates had no significant influence on the average egg number of female copepods. In a field experiment, higher copepod densities in enclosures resulted in a significantly higher infestation rate, but the ciliate load per individual copepod did not differ significantly among treatments.
Resumo:
Experiments in tanks and cages were conducted to examine the effects of stocking density and body size of the Mitten crab (Eriocheir sinensis) on transplanted submersed macrophyte biomass. The early juvenile crab with 7.0 +/-0.6 mm. carapace width (CW) had little effect on plant biomass, regardless of the stocking densities. However, larger crabs (CW: 18.0 +/-2.2,35.0 +/-3.6, and 60.0 +/-5.7 mm) significantly influenced plant biomass, especially at large stocking densities. Predictive models, using crab body size and stocking density, were generated to demonstrate effect of the mitten crab on the changes Of plant biomass. The results indicate that dense mitten crab populations may adversely affect aquatic plant communities, particularly when its animal food resources are scarce.
Resumo:
We examined the responses of zooplankton community, water transparency, chlorophyll a and nutrients to manipulation of density of silver carp (Hypophthyalmichthys molitrix) in an one-way factorial experiment using enclosures placed in Donghu (East Lake, 30 degrees 33' N, 114 degrees 23' E), located in Wuhan, P. R. China. Enclosures (18.75 m(3)) were treated with four silver carp densities, 0, 81, 225, 485 g/m(2). Total zooplankton abundance (excluding nauplii and rotifers except for Asplanchna sp.) and the mean size of dominant cladoceran species were significantly greater in enclosures with 0 and 81 fish densities than those in enclosures with 225 and 485 fish densities. Water transparency also improved significantly when silver carp densities were 0 or 81 g/m(2). We did not find significant effects of silver carp density on chlorophyll a, total phosphorus, or total nitrogen concentrations. We conclude that by reducing planktivorous fish to below the current density (190 g/m(2)), the zooplankton community can be shifted from the dominance of small-bodied Moina sp. to dominance of large-bodied Daphnia sp. Further, the water clarity can be increased.
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-05-07T13:34:11Z No. of bitstreams: 1 Origin of antiferromagnetism in CoO A density functional theory study.pdf: 263570 bytes, checksum: 9128a541375fb9fe9f761fc02ece4210 (MD5)
Resumo:
The alternate combinational approach of genetic algorithm and neural network (AGANN) has been presented to correct the systematic error of the density functional theory (DFT) calculation. It treats the DFT as a black box and models the error through external statistical information. As a demonstration, the AGANN method has been applied in the correction of the lattice energies from the DFT calculation for 72 metal halides and hydrides. Through the AGANN correction, the mean absolute value of the relative errors of the calculated lattice energies to the experimental values decreases from 4.93% to 1.20% in the testing set. For comparison, the neural network approach reduces the mean value to 2.56%. And for the common combinational approach of genetic algorithm and neural network, the value drops to 2.15%. The multiple linear regression method almost has no correction effect here.
Resumo:
Effects of interface roughness and dislocation density on the electroluminescence (EL) intensity of InGaN multiple quantum wells (MQWs) are investigated. It is found that the EL intensity increases with the number of satellite peaks in the x-ray diffraction experiments of InGaN MQW samples. It is indicated that the rough interface will lead the reduction of EL intensity of InGaN MQW samples. It is also found that the EL intensity increases with the decrease of dislocation density which is characterized by the x-ray diffraction measurements. It is suggested that the EL intensity of InGaN MQWs can be improved by decreasing the interface roughness and dislocation density.