942 resultados para Debugging in computer science
Resumo:
In this paper we introduce a class of descriptors for regular languages arising from an application of the Stone duality between finite Boolean algebras and finite sets. These descriptors, called classical fortresses, are object specified in classical propositional logic and capable to accept exactly regular languages. To prove this, we show that the languages accepted by classical fortresses and deterministic finite automata coincide. Classical fortresses, besides being propositional descriptors for regular languages, also turn out to be an efficient tool for providing alternative and intuitive proofs for the closure properties of regular languages.
Resumo:
Software architecture is the result of a design effort aimed at ensuring a certain set of quality attributes. As we show, quality requirements are commonly specified in practice but are rarely validated using automated techniques. In this paper we analyze and classify commonly specified quality requirements after interviewing professionals and running a survey. We report on tools used to validate those requirements and comment on the obstacles encountered by practitioners when performing such activity (e.g., insufficient tool-support; poor understanding of users needs). Finally we discuss opportunities for increasing the adoption of automated tools based on the information we collected during our study (e.g., using a business-readable notation for expressing quality requirements; increasing awareness by monitoring non-functional aspects of a system).
Resumo:
Imprecise manipulation of source code (semi-parsing) is useful for tasks such as robust parsing, error recovery, lexical analysis, and rapid development of parsers for data extraction. An island grammar precisely defines only a subset of a language syntax (islands), while the rest of the syntax (water) is defined imprecisely. Usually, water is defined as the negation of islands. Albeit simple, such a definition of water is naive and impedes composition of islands. When developing an island grammar, sooner or later a programmer has to create water tailored to each individual island. Such an approach is fragile, however, because water can change with any change of a grammar. It is time-consuming, because water is defined manually by a programmer and not automatically. Finally, an island surrounded by water cannot be reused because water has to be defined for every grammar individually. In this paper we propose a new technique of island parsing - bounded seas. Bounded seas are composable, robust, reusable and easy to use because island-specific water is created automatically. We integrated bounded seas into a parser combinator framework as a demonstration of their composability and reusability.
Resumo:
In this work, a method that synchronizes two video sequences is proposed. Unlike previous methods, which require the existence of correspondences between features tracked in the two sequences, and/or that the cameras are static or jointly moving, the proposed approach does not impose any of these constraints. It works when the cameras move independently, even if different features are tracked in the two sequences. The assumptions underlying the proposed strategy are that the intrinsic parameters of the cameras are known and that two rigid objects, with independent motions on the scene, are visible in both sequences. The relative motion between these objects is used as clue for the synchronization. The extrinsic parameters of the cameras are assumed to be unknown. A new synchronization algorithm for static or jointly moving cameras that see (possibly) different parts of a common rigidly moving object is also proposed. Proof-of-concept experiments that illustrate the performance of these methods are presented, as well as a comparison with a state-of-the-art approach.
Resumo:
Real cameras have a limited depth of field. The resulting defocus blur is a valuable cue for estimating the depth structure of a scene. Using coded apertures, depth can be estimated from a single frame. For optical flow estimation between frames, however, the depth dependent degradation can introduce errors. These errors are most prominent when objects move relative to the focal plane of the camera. We incorporate coded aperture defocus blur into optical flow estimation and allow for piecewise smooth 3D motion of objects. With coded aperture flow, we can establish dense correspondences between pixels in succeeding coded aperture frames. We compare several approaches to compute accurate correspondences for coded aperture images showing objects with arbitrary 3D motion.
Resumo:
We present a novel approach to the reconstruction of depth from light field data. Our method uses dictionary representations and group sparsity constraints to derive a convex formulation. Although our solution results in an increase of the problem dimensionality, we keep numerical complexity at bay by restricting the space of solutions and by exploiting an efficient Primal-Dual formulation. Comparisons with state of the art techniques, on both synthetic and real data, show promising performances.
Resumo:
In this work we devise two novel algorithms for blind deconvolution based on a family of logarithmic image priors. In contrast to recent approaches, we consider a minimalistic formulation of the blind deconvolution problem where there are only two energy terms: a least-squares term for the data fidelity and an image prior based on a lower-bounded logarithm of the norm of the image gradients. We show that this energy formulation is sufficient to achieve the state of the art in blind deconvolution with a good margin over previous methods. Much of the performance is due to the chosen prior. On the one hand, this prior is very effective in favoring sparsity of the image gradients. On the other hand, this prior is non convex. Therefore, solutions that can deal effectively with local minima of the energy become necessary. We devise two iterative minimization algorithms that at each iteration solve convex problems: one obtained via the primal-dual approach and one via majorization-minimization. While the former is computationally efficient, the latter achieves state-of-the-art performance on a public dataset.
Resumo:
Periacetabular osteotomy (PAO) is an effective approach for surgical treatment of hip dysplasia. The aim of PAO is to increase acetabular coverage of the femoral head and to reduce contact pressures by reorienting the acetabulum fragment after PAO. The success of PAO significantly depends on the surgeon’s experience. Previously, we have developed a computer-assisted planning and navigation system for PAO, which allows for not only quantifying the 3D hip morphology for a computer-assisted diagnosis of hip dysplasia but also a virtual PAO surgical planning and simulation. In this paper, based on this previously developed PAO planning and navigation system, we developed a 3D finite element (FE) model to investigate the optimal acetabulum reorientation after PAO. Our experimental results showed that an optimal position of the acetabulum can be achieved that maximizes contact area and at the same time minimizes peak contact pressure in pelvic and femoral cartilages. In conclusion, our computer-assisted planning and navigation system with FE modeling can be a promising tool to determine the optimal PAO planning strategy.
Resumo:
In this paper, reconstruction of three-dimensional (3D) patient-specific models of a hip joint from two-dimensional (2D) calibrated X-ray images is addressed. Existing 2D-3D reconstruction techniques usually reconstruct a patient-specific model of a single anatomical structure without considering the relationship to its neighboring structures. Thus, when those techniques would be applied to reconstruction of patient-specific models of a hip joint, the reconstructed models may penetrate each other due to narrowness of the hip joint space and hence do not represent a true hip joint of the patient. To address this problem we propose a novel 2D-3D reconstruction framework using an articulated statistical shape model (aSSM). Different from previous work on constructing an aSSM, where the joint posture is modeled as articulation in a training set via statistical analysis, here it is modeled as a parametrized rotation of the femur around the joint center. The exact rotation of the hip joint as well as the patient-specific models of the joint structures, i.e., the proximal femur and the pelvis, are then estimated by optimally fitting the aSSM to a limited number of calibrated X-ray images. Taking models segmented from CT data as the ground truth, we conducted validation experiments on both plastic and cadaveric bones. Qualitatively, the experimental results demonstrated that the proposed 2D-3D reconstruction framework preserved the hip joint structure and no model penetration was found. Quantitatively, average reconstruction errors of 1.9 mm and 1.1 mm were found for the pelvis and the proximal femur, respectively.
Resumo:
In this paper we propose a new fully-automatic method for localizing and segmenting 3D intervertebral discs from MR images, where the two problems are solved in a unified data-driven regression and classification framework. We estimate the output (image displacements for localization, or fg/bg labels for segmentation) of image points by exploiting both training data and geometric constraints simultaneously. The problem is formulated in a unified objective function which is then solved globally and efficiently. We validate our method on MR images of 25 patients. Taking manually labeled data as the ground truth, our method achieves a mean localization error of 1.3 mm, a mean Dice metric of 87%, and a mean surface distance of 1.3 mm. Our method can be applied to other localization and segmentation tasks.
Resumo:
In this paper we present BitWorker, a platform for community distributed computing based on BitTorrent. Any splittable task can be easily specified by a user in a meta-information task file, such that it can be downloaded and performed by other volunteers. Peers find each other using Distributed Hash Tables, download existing results, and compute missing ones. Unlike existing distributed computing schemes relying on centralized coordination point(s), our scheme is totally distributed, therefore, highly robust. We evaluate the performance of BitWorker using mathematical models and real tests, showing processing and robustness gains. BitWorker is available for download and use by the community.
Resumo:
Information-centric networking (ICN) addresses drawbacks of the Internet protocol, namely scalability and security. ICN is a promising approach for wireless communication because it enables seamless mobile communication, where intermediate or source nodes may change, as well as quick recovery from collisions. In this work, we study wireless multi-hop communication in Content-Centric Networking (CCN), which is a popular ICN architecture. We propose to use two broadcast faces that can be used in alternating order along the path to support multi-hop communication between any nodes in the network. By slightly modifying CCN, we can reduce the number of duplicate Interests by 93.4 % and the number of collisions by 61.4 %. Furthermore, we describe and evaluate different strategies for prefix registration based on overhearing. Strategies that configure prefixes only on one of the two faces can result in at least 27.3 % faster data transmissions.
Resumo:
User experience on watching live videos must be satisfactory even under the inuence of different network conditions and topology changes, such as happening in Flying Ad-Hoc Networks (FANETs). Routing services for video dissemination over FANETs must be able to adapt routing decisions at runtime to meet Quality of Experience (QoE) requirements. In this paper, we introduce an adaptive beaconless opportunistic routing protocol for video dissemination over FANETs with QoE support, by taking into account multiple types of context information, such as link quality, residual energy, buffer state, as well as geographic information and node mobility in a 3D space. The proposed protocol takes into account Bayesian networks to define weight vectors and Analytic Hierarchy Process (AHP) to adjust the degree of importance for the context information based on instantaneous values. It also includes a position prediction to monitor the distance between two nodes in order to detect possible route failure.