879 resultados para DOPED CRYSTALLINE SILICON
Resumo:
The primary excited state absorption processes relating to the (5)I(6) -> (5)I(7) 3 mu m laser transition in singly Ho(3+)-doped fluoride glass have been investigated in detail using time-resolved fluorescence spectroscopy. Selective laser excitation of the (5)I(6) and (5)I(7) energy levels established the occurrence of two excited state absorption transitions from these energy levels that compete with previously described energy transfer upconversion processes. The (5)I(7) -> (5)I(4) excited state absorption transition has peak cross sections at 1216 nm (sigma(esa)=2.8x10(-21) cm(2)), 1174 nm (sigma(esa)=1x10(-21) cm(2)), and 1134 nm (sigma(esa)=7.4x10(-22) cm(2)) which have a strong overlap with the (5)I(8) -> (5)I(6) ground state absorption. on the other hand, it was established that the excited state absorption transition (5)I(6) -> (5)S(2) had a weak overlap with ground state absorption. Using numerical solution of the rate equations, we show that Ho(3+)-doped fluoride fiber lasers employing pumping at 1100 nm rely on excited state absorption from the lowest excited state of Ho(3+) to maintain a population inversion and that energy transfer upconversion processes compete detrimentally with the excited state absorption processes in concentrated Ho(3+)-doped fluoride glass. (c) 2008 American Institute of Physics.
Resumo:
In this work, GdAlO3:RE3+ (RE = Eu or Tb) was successfully prepared by the Pechini method at lower temperatures when compared to others methods as solid-state synthesis and sol-gel process. In accordance to the XRD data, the fully crystalline single-phase GdAlO3 could be obtained at 900 degrees C. The differential thermal analysis (DTA) shows a crystallization peak at 850 degrees C. The samples are composed by monocrystalline particles (50-120 nm) exhibiting the formation of aggregates among them, which indicates the beginning of the sinterization process. This feature indicates a strong tendency to the formation of aggregates, which is a suitable ability for the close-packing of particles, and hence a potential application in X-ray intensifying screens. Luminescence measurements indicate Gd3+ -> RE3+ energy transfer. The Eu3+ emission spectra exhibit all the characteristics D-5(0) -> F-7(j) transitions and the observed profile suggests that RE3+ ions occupy at least one site without center of symmetry. For terbium-doped samples, the D-5(3) -> F-7(j) (blue emission) and D-5(4) -> F-7(j) (green emission) transitions were observed and the ratio between them may depend on the Tb3+ content due to cross-relaxation processes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Multicolor and white light emissions have been achieved in Yb3+, Tm3+ and Ho3+ triply doped heavy metal oxide glasses upon laser excitation at 980 nm. The red (660 nm), green (547 nm) and blue (478 nm) up conversion emissions of the rare earth (RE) ions triply doped TeO2-GeO2-Bi2O3-K2O glass (TGBK) have been investigated as a function of the RE concentration and excitation power of the 980 nm laser diode. The most appropriate combination of RE in the TGBK glass host (1.6 wt% Yb2O3, 0.6 wt% Tm2O3 and 0.1 wt% Ho2O3) has been determined with the purpose to tune the primary colors (RGB) respective emissions and generate white light emission by varying the pump power. The involved infrared to visible up conversion mechanisms mainly consist in a three-photon blue up conversion of Tm3+ ions and a two-photon green and red up conversions of Ho3+ ions. The resulting multicolor emissions have been described according to the CIE-1931 standards. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Er(3+) doped (100-x)SiO(2)-xZrO(2) planar waveguides were prepared by the sol-gel route, with x ranging from 10 up to 30 mol%. Multilayer films doped with 0.3 mol% Er(3+) ions were deposited on fused quartz substrates by the dip-coating technique. The thickness and refractive index were measured by m-line spectroscopy at different wavelengths. The fabrication protocol was optimized in order to confine one propagating mode at 1.5 mu m. Photoluminescence in the near and visible region indicated a crystalline local environment for the Er(3+) ion. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work we studied the structural and optical properties of lithium tantalate (LiTaO3) powders doped with Eu3+ ions. We have examined the different sites occupied by the rare earth ion through the correlation of the DRX data analyzed with the Rietveld method and some spectroscopic parameters derived from the Eu3+ luminescence. Adirect relation was established between the lattice parameters and the occupation fraction of Eu3+ in each LiTaO3 site. The occupation fraction was set as the relative population of Eu3+ ions for each site obtained by means of the intensity, baricenter, and the spontaneous emission coefficients of the D-5(0)-> F-7(0) transitions. We concluded that the unit cell parameter a presents the same behavior of the Eu3+ occupation fraction in Ta5+ sites as a function of the Eu3+ content in LiTaO3. The same was observed for the variation in Eu3+ occupation fraction in the Li+ site and the unit cell parameter c with the Eu3+ content. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3204967]
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Erbium L-3-edge extended x-ray absorption fine structure (EXAFS) measurements were performed on rare earth doped fluorosilicate and fluoroborate glasses and glass ceramics. The well known nucleating effects of erbium ions for the crystallization of cubic lead fluoride (based on x-ray diffraction measurements) and the fact that the rare earth ions are present in the crystalline phase (as indicated by Er3+ emission spectra) seem in contradiction with the present EXAFS analysis, which indicates a lack of medium range structural ordering around the Er3+ ions and suggests that the lead fluoride crystallization does not occur in the nearest neighbor distance of the rare earth ion. Molecular dynamics simulations of the devitrification process of a lead fluoride glass doped with Er3+ ions were performed, and results indicate that Er3+ ions lower the devitrification temperature of PbF2, in good agreement with the experimental results. The genuine role of Er3+ ions in the devitrification process of PbF2 has been investigated. Although Er3+ ions could indeed act as seeds for crystallization, as experiments suggest, molecular dynamics simulation results corroborate the experimental EXAFS observation that the devitrification does not occur at its nearest neighbor distance. (c) 2008 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)