934 resultados para Cyclic Enones
Resumo:
The Raman spectrum of cyclopropane is of great interest in view of the fact that it is the simplest of the cyclic hydrocarbons, and also from the point of view of the structure of the cyclopropane molecule. I have investigated this substance both in the liquid and vapour states and have obtained the following results :
Resumo:
Monopropiophenone thiocarbonohydrazone has been isolated in both linear and cyclic isomeric forms. Each form has been shown to isomerize and exist in equilibrium with the other in DMSO-d6 solution by 1H and 13C NMR spectroscopy. The kinetics of this transformation show attainment of equilibrium in approximately 6 h, with a linear to cyclic configuration ratio of 40:60.
Resumo:
A room-temperature cathodic electrolytic process was developed in the laboratory to recover zinc from industrial leach residues. The various parameters affecting the electroleaching process were studied using a statistically designed experiment. To understand the mechanisms behind the electrode processes, cyclic voltammetry and galvanostatic studies were carried out. The role of Einh measurements in monitoring such an electroleaching procedure is also shown. Since significant amounts of iron were also present in the leach liquor, attempts were made to purify it before zinc recovery by electrowinning. Reductive dissolution and creation of anion vacancies were found to be responsible for the dissolution of zinc ferrite present in the leach residue. A flow sheet of the process is given.
Resumo:
The monoterpene cyclic ether, cineole (l,8-cineole, I) also known as eucalyptol, is a component of many essential oils and is widely distributed in nature. It is extensively used in pharmaceutical preparations for external application and also as a nasal spray. It was reported earlier that cineole when administered to sheep may be largely oxidized in the system (Scheline 1978). However the mode of metabolism of cineole is not known. Hence the present study was undertaken to investigate the metabolic fate of this ubiquitous terpenoid following its administration to rats by gastric intubation.
Resumo:
Rail track undergoes complex loading patterns under moving traffic conditions compared to roads due to its continued and discontinued multi-layered structure, including rail, sleepers, ballast layer, sub-ballast layer, and subgrade. Particle size distributions (PSDs) of ballast, subballast, and subgrade layers can be critical in cyclic plastic deformation of rail track under moving traffic on frequent track degradation of rail tracks, especially at bridge transition zones. Conventional test approaches: static shear and cyclic single-point load tests are however unable to replicate actual loading patterns of moving train. Multi-ring shear apparatus; a new type of torsional simple shear apparatus, which can reproduce moving traffic conditions, was used in this study to investigate influence of particle size distribution of rail track layers on cyclic plastic deformation. Three particle size distributions, using glass beads were examined under different loading patterns: cyclic sin-gle-point load, and cyclic moving wheel load to evaluate cyclic plastic deformation of rail track under different loading methods. The results of these tests suggest that particle size distributions of rail track structural layers have significant impacts on cyclic plastic deformation under moving train load. Further, the limitations in con-ventional test methods used in laboratories to estimate the plastic deformation of rail track materials lead to underestimate the plastic deformation of rail tracks.
Resumo:
Circuits for realizing serial quaternary-to-analogue converters (QACs) are proposed in this paper. Three techniques are presented based on Shannon-Rack decoder, sample/hold serial digital-to-analogue converter and cyclic digital-to-analogue converter. Circuits for the generation of control signals and the multiplexer required in the realization of the QACs are also described. A comparison of the three methods is made.
Resumo:
Guanylyl cyclases (GCs) are enzymes that generate cyclic GMP and regulate different physiologic and developmental processes in a number of organisms. GCs possess sequence similarity to class III adenylyl cyclases (ACs) and are present as either membrane-bound receptor GCs or cytosolic soluble GCs. We sought to determine the evolution of GCs using a large-scale bioinformatic analysis and found multiple lineage-specific expansions of GC genes in the genomes of many eukaryotes. Moreover, a few GC-like proteins were identified in prokaryotes, which come fused to a number of different domains, suggesting allosteric regulation of nucleotide cyclase activity Eukaryotic receptor GCs are associated with a kinase homology domain (KHD), and phylogenetic analysis of these proteins suggest coevolution of the KHD and the associated cyclase domain as well as a conservation of the sequence and the size of the linker region between the KHD and the associated cyclase domain. Finally, we also report the existence of mimiviral proteins that contain putative active kinase domains associated with a cyclase domain, which could suggest early evolution of the fusion of these two important domains involved in signa transduction.
Resumo:
Proteases can catalyze both peptide bond cleavage and formation, yet the hydrolysis reaction dominates in nature. This presents an interesting challenge for the biosynthesis of backbone cyclized (circular) proteins, which are encoded as part of precursor proteins and require post-translational peptide bond formation to reach their mature form. The largest family of circular proteins are the plant-produced cyclotides; extremely stable proteins with applications as bioengineering scaffolds. Little is known about the mechanism by which they are cyclized in vivo but a highly conserved Asn (occasionally Asp) residue at the C terminus of the cyclotide domain suggests that an enzyme with specificity for Asn (asparaginyl endopeptidase; AEP) is involved in the process. Nicotiana benthamiana does not endogenously produce circular proteins but when cDNA encoding the precursor of the cyclotide kalata B1 was transiently expressed in the plants they produced the cyclotide, together with linear forms not commonly observed in cyclotide-containing plants. Observation of these species over time showed that in vivo asparaginyl bond hydrolysis is necessary for cyclization. When AEP activity was suppressed, either by decreasing AEP gene expression or using a specific inhibitor, the amount of cyclic cyclotide in the plants was reduced compared with controls and was accompanied by the accumulation of extended linear species. These results suggest that an AEP is responsible for catalyzing both peptide bond cleavage and ligation of cyclotides in a single processing event.
Resumo:
Three oxo-bridged diiron(III) complexes of L-histidine and heterocyclic bases [Fe-2(mu-O)(L-his)(2)(B)(2)](ClO4)(2) (1-3), where B is 2,2'-bipyridine (bpy),1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), were prepared and characterized. The bpy complex 1 was structurally characterized by X-ray crystallography. The molecular structure showed a {Fe-2(mu-O)} core in which iron(III) in a FeN4O2 coordination is bound to tridentate monoanionic L-histidine and bidentate bpy ligands. The Fe center dot center dot center dot Fe distance is similar to 3.5 angstrom. The Fe-O-Fe unit is essentially linear, giving a bond angle of similar to 172 degrees. The complexes showed irreversible cyclic voltammetric cathodic response near -0.1 V vs. SCE in H2O-0.1 M KCl. The binuclear units displayed antiferromagnetic interaction between two high-spin (S = 5/2) iron(III) centers giving a -J value of -110 cm(-1). The complexes showed good DNA binding propensity giving a binding constant value of similar to 10(5) M-1. Isothermal titration calorimetric data indicated single binding mode to the DNA. The binding was found to be driven by negative free energy change and enthalpy. The dpq complex 3 showed oxidative double-strand DNA cleavage on exposure to UV-A and visible light. The phen complex 2 displayed single-strand photocleavage of DNA. The DNA double-strand breaks were rationalized from theoretical molecular docking calculations. Mechanistic investigations showed formation of hydroxyl radicals as the reactive species through photodecarboxylation of the L-histidine ligand. The complexes exhibited good binding propensity to bovine serum albumin (BSA) protein in Tris-HCl/NaCl buffer medium. The dpq complex 3 showed UV-A light-induced site-specific oxidative BSA cleavage forming fragments of similar to 45 kDa and similar to 20 kDa molecular weights via SOH pathway.
Resumo:
Tridiagonal diagonally dominant linear systems arise in many scientific and engineering applications. The standard Thomas algorithm for solving such systems is inherently serial forming a bottleneck in computation. Algorithms such as cyclic reduction and SPIKE reduce a single large tridiagonal system into multiple small independent systems which can be solved in parallel. We have developed portable cyclic reduction and SPIKE algorithm OpenCL implementations with the intent to target a range of co-processors in a heterogeneous computing environment including Field Programmable Gate Arrays (FPGAs), Graphics Processing Units (GPUs) and other multi-core processors. In this paper, we evaluate these designs in the context of solver performance, resource efficiency and numerical accuracy.
Resumo:
The region around Waclakkancheri, in the province of Kerala, India, which lies in the vicinity of Palghat-Cauvery ;hear zone (within the Precambrian crystalline terrain), has been a site of microseismic activity since 1989. Earlier studies had identified a prominent WNW-ESE structure overprinting on the E-W trending lineaments associated with Palghat-Cauvery shear zone. We have mapped this structure, located in a chamockite quarry near Desamangalam, Waclakkancheri, which we identify as a ca. 30 km-long south dipping reverse fault. This article presents the characteristics of this fault zone exposed on the exhumed crystalline basement and discusses its significance in understanding the earthquake potential of the region. This brittle deformation zone consists of fracture sets with small-scale displacement and slip planes with embedded fault gouges. The macroscopic as well as the microscopic studies of this fault zone indicate that it evolved through different episodes of faulting in the presence of fluids. The distinct zones within consolidated gouge and the cross cutting relationship of fractures indicate episodic fault activity. At least four faulting episodes can be recognized based on the sequential development of different structural elements in the fault rocks. The repeated ruptures are evident along this shear zone and the cyclic behavior of this fault consists of co-seismic ruptures alternating with inter-seismic periods, which is characterized by the sealed fractures and consolidated gouge. The fault zone shows a minimum accumulated dip/oblique slip of 2.1 m in the reverse direction with a possible characteristic slip of 52 cm (for each event). The ESR dating of fault gouge indicates that the deformation zone records a major event in the Middle Quaternary. The empirical relationships between fault length and slip show that this fault may generate events M >= 6. The above factors suggest that this fault may be characterized as potentially active. Our study offers some new pointers that can be used in other slow deforming cratonic hinterlands in exploring the discrete active faults.
Resumo:
The low cycle fatigue behaviour of precipitation strengthened nickel-base superalloy 720Li containing a low concentration of interstitial carbon and boron was studied at 25, 400 and 650 degrees C. Cyclic stress response at all temperatures was stable under fully reversed constant total strain amplitude (Delta epsilon/2) when Delta epsilon/2 <= 0.6%. At Delta epsilon/2 > 0.6%, cyclic hardening was followed by softening, until fracture at 25 and 650 degrees C. At 400 degrees C, however, cyclic stress plateaued after initial hardening. Dislocation-dislocation interactions and precipitate shearing were the micromechanisms responsible for the cyclic hardening and softening, respectively. The number of reversals to failure vs. plastic strain amplitude plot exhibits a bilinear Coffin-Manson relation. Transmission electron microscopy substructures revealed that planar slip was the major deformation mode under the conditions examined. However, differences in its distribution were observed to be the cause for the bilinearity in fatigue lives. The presence of fine deformation twins at low Delta epsilon/2 at 650 degrees C suggests the role of twinning in homogenization of cyclic deformation.
Resumo:
BACKGROUND OR CONTEXT The concept of 'Aboriginal engineering' has had little exposure in conventional engineering education programs, despite more than 40,000 years of active human engagement with the diverse Australian environment. The work reported in this paper began with the premise that Indigenous Student Support Through Indigenous Perspectives Embedded in Engineering Curricula (Goldfinch, et al 2013) would provide a clear and replicable means of encouraging Aboriginal teenagers to consider a career in engineering. Although that remains a key outcome of this OLT project, the direction taken by the research had led to additional insights and perspectives that have wide implications for engineering education more generally. There has only been passing reference to the achievements of Aboriginal engineering in current texts, and the very absence of such references was a prompt to explore further as our work developed. PURPOSE OR GOAL Project goals focused on curriculum-based change, including development of a model for inclusive teaching spaces, and study units employing key features of the model. As work progressed we found we needed to understand more about the principles and practices informing the development of pre-contact Aboriginal engineering strategies for sustaining life and society within the landscape of this often harsh continent. We also found ourselves being asked 'what engineering did Aboriginal cultures have?' Finding that there are no easy-to- access answers, we began researching the question, while continuing to engage with specific curriculum trials. APPROACH Stakeholders in the project had been identified as engineering educators, potential Aboriginal students and Aboriginal communities local to Universities involved in the project. We realised, early on, that at least one more group was involved - all the non-Aboriginal students in engineering classes. This realisation, coupled with recognition of the need to understand Aboriginal engineering as a set of viable, long term practices, altered the focus of our efforts. Rather than focusing primarily on finding ways to attract Aboriginal engineering students, the shift has been towards evolving ways of including knowledge about Aboriginal practices and principles in relevant engineering content. DISCUSSION This paper introduces the model resulting from the work of this project, explores its potential influence on engineering curriculum development and reports on implementation strategies. The model is a static representation of a dynamic and cyclic approach to engaging with Aboriginal engineering through contact with local communities in regard to building knowledge about the social beliefs underlying Aboriginal engineering principles and practices. Ways to engage engineering educators, students and the wider community are evolving through the continuing work of the project team and will be reported in more detail in the paper. RECOMMENDATIONS/IMPLICATIONS/CONCLUSION While engineering may be considered by some to be agnostic in regard to culture and social issues, the work of this project is drawing attention to the importance of including such issues into curriculum materials at a number of levels of complexity. The paper will introduce and explore the central concepts of the research completed to date, as well as suggesting ways in which engineering educators can extend their knowledge and understanding of Aboriginal engineering principles in the context of their own specialisations.
Resumo:
It is well known that the notions of normal forms and acyclicity capture many practical desirable properties for database schemes. The basic schema design problem is to develop design methodologies that strive toward these ideals. The usual approach is to first normalize the database scheme as far as possible. If the resulting scheme is cyclic, then one tries to transform it into an acyclic scheme. In this paper, we argue in favor of carrying out these two phases of design concurrently. In order to do this efficiently, we need to be able to incrementally analyze the acyclicity status of a database scheme as it is being designed. To this end, we propose the formalism of "binary decompositions". Using this, we characterize design sequences that exactly generate theta-acyclic schemes, for theta = agr,beta. We then show how our results can be put to use in database design. Finally, we also show that our formalism above can be effectively used as a proof tool in dependency theory. We demonstrate its power by showing that it leads to a significant simplification of the proofs of some previous results connecting sets of multivalued dependencies and acyclic join dependencies.
Resumo:
A technique to quantify in real time the microstructural changes occurring during mechanical nanoscale fatigue of ultrathin surface coatings has been developed. Cyclic nanoscale loading, with amplitudes less than 100 nm, is achieved with a mechanical probe miniaturized to fit inside a transmission electron microscope (TEM). The TEM tribological probe can be used for nanofriction and nanofatigue testing, with 3D control of the loading direction and simultaneous TEM imaging of the nano-objects. It is demonstrated that fracture of 10-20 nm thick amorphous carbon films on sharp gold asperities, by a single nanoscale shear impact, results in the formation of < 10 nm diameter amorphous carbon filaments. Failure of the same carbon films after cyclic nanofatigue, however, results in the formation of carbon nanostructures with a significant degree of graphitic ordering, including a carbon onion.