949 resultados para Coefficient of friction
Resumo:
We report what is to our knowledge the first demonstration of a transient x-ray laser pumped by a 350-fs pulse in a traveling-wave irradiation geometry. For a 500-fs pump pulse the traveling-wave irradiation was found to have a strong effect on enhancing the Ni-like silver 4d-4p lasing emission at 13.9 nm. The signal enhancement was significantly less when the pulse duration was lengthened to 1.7 ps. The experimental observations are well reproduced by a simple model when the duration of gain is taken of the order of 15-20 ps. For the 500-fs pulse a gain coefficient of 14.5 cm(-1) was measured for plasma lengths up to 7 mm. Refraction of the amplified photons is believed to be the main cause of the limitation of the effective amplification length. (C) 2000 Optical Society of America.
Resumo:
The transient-excitation pumping scheme, in which a picosecond duration pulse rapidly heats the plasma preformed by a low-intensity nanosecond pulse, was used to pump the Ne-like germanium, J = 0-1 transition at 19.6 nm. A small-signal gain coefficient of 30 cm(-1) was measured for targets less than or equal to 5 mm long. (C) 1998 Optical Society of America.
Resumo:
In the past decades, numerous types of nanomedicines have been developed for the efficient and safe delivery of nucleic acid-based drugs for cancer therapy. Given that the destination sites for nucleic acid-based drugs are inside cancer cells, delivery systems need to be both targeted and shielded in order to overcome the extracellular and intracellular barriers. One of the major obstacles that has hindered the translation of nanotechnology-based gene-delivery systems into the clinic has been the complexity of the design and assembly processes, resulting in non-uniform nanocarriers with unpredictable surface properties and efficiencies. Consequently, no product has reached the clinic yet. In order to address this shortcoming, a multifunctional targeted biopolymer is genetically engineered in one step, eliminating the need for multiple chemical conjugations. Then, by systematic modulation of the ratios of the targeted recombinant vector to PEGylated peptides of different sizes, a library of targeted-shielded viral-mimetic nanoparticles (VMNs) with diverse surface properties are assembled. Through the use of physicochemical and biological assays, targeted-shielded VMNs with remarkably high transfection efficiencies (>95%) are screened. In addition, the batch-to-batch variability of the assembled targeted-shielded VMNs in terms of uniformity and efficiency is examined and, in both cases, the coefficient of variation is calculated to be below 20%, indicating a highly reproducible and uniform system. These results provide design parameters for engineering uniform, targeted-shielded VMNs with very high cell transfection rates that exhibit the important characteristics for in vivo translation. These design parameters and principles could be used to tailor-make and assemble targeted-shielded VMNs that could deliver any nucleic acid payload to any mammalian cell type.
Resumo:
This study explores the possible application of a biodegradable plant based surfactant, obtained from Sapindus mukorossi, for washing low levels of arsenic (As) from an iron (Fe) rich soil. Natural association of As(V) with Fe(III) makes the process difficult. Soapnut solution was compared to anionic surfactant sodium dodecyl sulfate (SDS) in down-flow and a newly introduced suction mode for soil
column washing. It was observed that soapnut attained up to 86% efficiency with respect to SDS in removing As. Full factorial design of experiment revealed a very good fit of data. The suction mode generated up to 83 kPa pressure inside column whilst down-flow mode generated a much higher pressure of 214 kPa, thus making the suction mode more efficient. Micellar solubilisation was found to
be responsible for As desorption from the soil and it followed 1st order kinetics. Desorption rate coefficient of suction mode was found to be in the range of 0.005 to 0.01, much higher than down-flow mode values. Analysis of the FT-IR data suggested that the soapnut solution did not interact chemically with As, offering an option for reusing the surfactant. Soapnut can be considered as a soil washing
agent for removing As even from soil with high Fe content.
Resumo:
Background - The study of corneal endothelium, by specular microscopy, in patients with anterior uveitis has largely been restricted to observations on the endothelial cells. In this prospective study 'keratic precipitates' (KP) in different types of uveitis were examined in different stages of the disease process and the endothelial changes occurring in the vicinity of the KP were evaluated in comparison with the endothelium of the uninvolved eye. Methods - 13 patients with active unilateral uveitis were recruited. The mean age was 42.9 years (range 20-76 years). A Tomey-1100 contact wide field specular (x10) microscope was used to capture endothelial images and KP until the resolution of uveitis. Data regarding type of uveitis, number, size, and nature of KP were recorded. Automated morphometric analysis was done for cell size, cell density and coefficient of variation, and statistical comparisons of cell size and cell density were made (Student's t test) between the endothelium in the vicinity of fresh and resolving KP, fresh KP and normal endothelium, and resolving KP and normal endothelium. Results - On specular microscopy, fresh KP were seen as dense, white glistening deposits occupying 5-10 endothelial cells in diameter and fine KP were widely distributed and were one or two endothelial cells in diameter. The KP in Posner-Schlossman syndrome had a distinct and different morphology. With clinical remission of uveitis, the KP were observed to undergo characteristic morphological changes and old KP demonstrated a large, dark halo surrounding a central white deposit and occasionally a dark shadow or a 'lacuna' replaced the site of the original KP. Endothelial blebs were noted as dark shadows or defects in the endothelial mosaic in patients with recurrent uveitis. There was significant statistical difference in the mean cell size and cell density of endothelial cells in the vicinity of fresh KP compared with normal endothelium of the opposite eye. Conclusion - This study elucidated the different specular microscopic features of KP in anterior uveitis. Distinct morphological features of large and fine KP were noted. These features underwent dramatic changes on resolution of uveitis. The endothelium was abnormal in the vicinity of KP, which returned to near normal values on resolution of uveitis.
Resumo:
Objective: To compare the reproducibility of optic disk measurements provided by an image analyzer and a scanning laser tomograph. Methods: Ten images of the same eye of 10 normal volunteers were taken with the Heidelberg Retina Tomograph and with the Topcon ImageNet. Intraclass correlation coefficient (ICC) and coefficient of variation (CV) were used to evaluate the reproducibility of the measurements. Results: Eleven parameters were analyzed with the Topcon ImageNet. Six parameters (55%) had ICC greater than 90%. Four parameters (36%) had CV less than 10%. Twelve parameters were evaluated with the Heidelberg Retina Tomograph. Nine parameters (75%) had ICC over 90%. Nine parameters (75%) had CV less than 10%. Conclusion: Both systems provided reproducible data. The optic disk parameters provided by the Heidelberg Retina Tomograph had a better reproducibility than those obtained from the Topcon ImageNet.
Resumo:
Multiplexed immunochemical detection platforms offer the potential to decrease labour demands, increase sample throughput and decrease overall time to result. A prototype four channel multiplexed high throughput surface plasmon resonance biosensor was previously developed, for the detection of food related contaminants. A study focused on determining the instruments performance characteristics was undertaken. This was followed by the development of a multiplexed assay for four high molecular weight proteins. The protein levels were simultaneously evaluated in serum samples of 10-week-old veal calves (n = 24) using multiple sample preparation methods. Each of the biosensor's four channels were shown to be independent of one another and produced multiplexed within run repeatability (n = 6) ranging from 2.0 to 6.7%CV, for the four tested proteins, whilst between run reproducibility (n = 4) ranged from 1.5 to 8.9%CV. Four calibration curves were successfully constructed before serum sample preparation was optimised for each protein. Multiplexed concentration analysis was successfully performed on four channels revealing that each proteins concentration was consistent across the twenty-four tested animals. Signal reproducibility (n > 19) on a further long term study revealed coefficient of variation ranging from 1.1% to 7.3% and showed that the multiplexed assay was stable for at least 480 cycles. These findings indicate that the performance characteristics fall within the range of previously published data for singleplex optical biosensors and that the multiplexing biosensor is fit-for-purpose for simultaneous concentration analysis in many different types of applications such as the multiplexed detection of markers of growth-promoter abuse and multiplexed detection of residues of concern in food safety. © 2013 Elsevier B.V.
Resumo:
We have developed a new technique for quantifying methionine sulfoxide (MetSO) in protein to assess levels of oxidative stress in physiological systems. In this procedure, samples are hydrolyzed with methanesulfonic acid (MSA) in order to avoid the conversion of MetSO to methionine (Met) that occurs during hydrolysis of protein in HCl. The hydrolysate is fractionated on a cation exchange column to remove the nonvolatile MSA from amino acids, and the amino acids are then derivatized as their trimethylsilyl esters for analysis by selected ion monitoring-gas chromatography/mass spectrometry. The limit of detection of the assay is 200 pmol of MetSO per analysis, and the interassay coefficient of variation is 5.8%. Compared to current methods, the SIM-GC/MS assay avoids the potential for conversion of Met to MetSO during sample preparation, requires less sample preparation time, has lower variability, and uses mass spectrometry for sensitive and specific analyte detection.
Resumo:
The commonly used British Standard constant head triaxial permeability test for testing of fine-grained soils is relatively time consuming. A reduction in the required time for soil permeability testing would provide potential cost savings to the construction industry, particularly in the construction quality assurance of landfill clay liners. The purpose of this paper is to evaluate an alternative approach of measuring permeability of fine-grained soils benefiting from accelerated time scaling for seepage flow when testing specimens in elevated gravity conditions provided by a centrifuge. As part of the investigation, an apparatus was designed and produced to measure water flow through soil samples under conditions of elevated gravitational acceleration using a small desktop laboratory centrifuge. A membrane was used to hydrostatically confine the test sample. A miniature data acquisition system was designed and incorporated in the apparatus to monitor and record changes in head and flow throughout the tests. Under enhanced gravity in the centrifuge, the flow through the sample was under ‘variable head' conditions as opposed to ‘constant head' conditions as in the classic constant head permeability tests conducted at 1 g . A mathematical model was developed for analysis of Darcy's coefficient of permeability under conditions of elevated gravitational acceleration and verified using the results obtained. The test data compare well with the results on analogous samples obtained using the classical British Standard constant head permeability tests.
Resumo:
A comparative study of CO electrooxidation on different catalysts using in situ FTIR spectroscopy is presented. As electrode materials, polycrystalline Pt and Ru and a PtRu (50:50) alloy are used. The latter is one of the well-known active alloys for CO oxidation. The potential dependence of the band frequencies for the CO stretch indicates the formation of relatively compact islands at pure Pt and Ru, and a loose adlayer structure at the alloy. This loose structure has a positive effect on the rate of oxidative desorption. CO submonolayer coverages are obtained by integrating the absorption bands for CO produced upon oxidation of adsorbed CO. The band intensities measured at Pt, Ru, and PtRu indicate an influence of the substrate on the absorption coefficient of the CO stretch. It is shown that for a correct description of the catalyst properties toward CO electrooxidation, it must be distinguished between bulk and adsorbed CO. In contrast to the statement of most of the recent papers that a PtRu alloy (50:50) is the material with the highest activity for CO oxidation, it is demonstrated and rationalized in the present paper that for bulk CO oxidation pure Ru is the best catalyst. © 1999 American Chemical Society.
Resumo:
A lateral flow immunoassay (LFIA) has been developed and fully validated to detect the primary amnesic shellfish poisoning (ASP) toxin, domoic acid (DA). The performance characteristics of two versions of the test were investigated using spiked and naturally contaminated shellfish (mussels, scallops, oysters, clams, and cockles). The tests provide a qualitative result, to indicate the absence or presence of DA in extracts of shellfish tissues, at concentrations that are relevant to regulatory limits. The new rapid assay (LFIA version 2) was designed to overcome the performance limitations identified in the first version of the assay. The improved test uses an electronic reader to remove the subjective nature of the generated results, and the positive cut-off for screening of DA in shellfish was increased from 10 ppm (version 1) to 17.5 ppm (version 2). A simple extraction and test procedure was employed, which required minimal equipment and materials; results were available 15 min after sample preparation. Stability of the aqueous extracts at room temperature (22 C) at four time points (up to 245 min after extraction) and across a range of DA concentrations was 100.3±1.3% and 98.8±2.4% for pre- and post-buffered extracts, respectively. The assay can be used both within laboratory settings and in remote locations. The accuracy of the new assay, to indicate negative results at or below 10 ppm DA, and positive results at or above 17.5 ppm, was 99.5% (n=216 tests). Validation data were obtained from a 2-day, randomised, blind study consisting of multiple LFIA lots (n=3), readers (n=3) and operators (n=3), carrying out multiple extractions of mussel tissue (n=3) at each concentration (0, 10, 17.5, and 20 ppm). No matrix effects were observed on the performance of the assay with different species (mussels, scallops, oysters, clams, and cockles). There was no impact on accuracy or interference from other phycotoxins, glutamic acid or glutamine with various strip incubations (8, 10, and 12 min). The accuracy of the assay, using naturally contaminated samples to indicate negative results at or below 12.5 ppm and positive results at or above 17.5 ppm, was 100%. Variability between three LFIA lots across a range of DA concentrations, expressed as coefficient of variation (% CV), was 1.1±0.4% (n=2 days) based on quantitative readings from the electronic reader. During an 8 week stability study, accuracy of the method with test strips stored at various temperatures (6, 22, 37 and 50 C) was 100%. Validation for both versions included comparisons with results obtained using reference LC-UV methods. © 2013 Elsevier B.V.
Resumo:
We extend the collective atomic recoil lasing (CARL) model including the effects of friction and diffusion forces acting on the atoms due to the presence of optical molasses fields. The results from this model are consistent with those from a recent experiment by Kruse [ Phys. Rev. Lett. 91, 183601 (2003) ]. In particular, we obtain a threshold condition above which collective backscattering occurs. Using a nonlinear analysis we show that the backscattered field and the bunching evolve to a steady state, in contrast to the nonstationary behavior of the standard CARL model. For a proper choice of the parameters, this steady state can be superfluorescent.
Resumo:
The current-voltage-temperature characteristics of PtSi/p-Si Schottky barrier diodes were measured in the temperature range 60-115 K. Deviation of the ideality factor from unity below 80 K may be modelled using the so-called T-0 parameter with T-0 = 18 K. It is also shown that the curvature in the Richardson plots may be remedied by using the flatband rather than the zero-bias saturation current density. Physically, the departure from ideality is interpreted in terms of an inhomogeneous Schottky contact. Here we determine a mean barrier height at T = 0 K, phi(b)(-0) = 223 mV, with an (assumed) Gaussian distribution of standard deviation sigma(phi) = 12.5 mV. These data are correlated with the zero-bias barrier height, phi(j)(0) = 192 mV (at T = 90 K), the photoresponse barrier height, phi(ph) = 205 mV, and the flatband barrier height, phi(fb) = 214 mV. Finally, the temperature coefficient of the flatband barrier was found to be -0.121 mV K-1, which is approximately equal to 1/2(dE(g)(i)/dT), thus suggesting that the Fermi level at the interface is pinned to the middle of the band gap.
Resumo:
Antimicrobial residues found to be present in milk can have both health and economic impacts. For these reasons, the widespread routine testing of milk is required. Due to delays with sample handling and test scheduling, laboratory-based tests are not always suited for making decisions about raw material intake and product release, especially when samples require shipping to a central testing facility. Therefore, rapid on-site screening tests that can produce results within a matter of minutes are required to facilitate rapid intake and product release processes. Such tests must be simple for use by non-technical staff. There is increasing momentum towards the development and implementation of multiplexing tests that can detect a range of important antimicrobial residues simultaneously. A simple in situ multiplexed planar waveguide device that can simultaneously detect chloramphenicol, streptomycin and desfuroylceftiofur in raw dairy milk, without sample preparation, has been developed. Samples are simply mixed with antibody prior to an aliquot being passed through the detection cartridge for 5 min before reading on a field-deployable portable instrument. Multiplexed calibration curves were produced in both buffer and raw milk. Buffer curves, for chloramphenicol, streptomycin and desfuroylceftiofur, showed linear ranges (inhibitory concentration (IC)20–IC80) of 0.1–0.9, 3–129 and 12–26 ng/ml, whilst linear range in milk was 0.13–0.74, 11–376 and 2–12 ng/ml, respectively, thus meeting European legislated concentration requirements for both chloramphenicol and streptomycin, in milk, without the need for any sample preparation. Desfuroylceftiofur-contaminated samples require only simple sample dilution to bring positive samples within the range of quantification. Assay repeatability and reproducibility were lower than 12 coefficient of variation (%CV), whilst blank raw milk samples (n = 9) showed repeatability ranging between 4.2 and 8.1 %CV when measured on all three calibration curves.
Resumo:
The peptides derived from envelope proteins have been shown to inhibit the protein-protein interactions in the virus membrane fusion process and thus have a great potential to be developed into effective antiviral therapies. There are three types of envelope proteins each exhibiting distinct structure folds. Although the exact fusion mechanism remains elusive, it was suggested that the three classes of viral fusion proteins share a similar mechanism of membrane fusion. The common mechanism of action makes it possible to correlate the properties of self-derived peptide inhibitors with their activities. Here we developed a support vector machine model using sequence-based statistical scores of self-derived peptide inhibitors as input features to correlate with their activities. The model displayed 92% prediction accuracy with the Matthew’s correlation coefficient of 0.84, obviously superior to those using physicochemical properties and amino acid decomposition as input. The predictive support vector machine model for self- derived peptides of envelope proteins would be useful in development of antiviral peptide inhibitors targeting the virus fusion process.