964 resultados para Castor oil based polyurethane


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an investigation of design code provisions for steel-concrete composite columns. The study covers the national building codes of United States, Canada and Brazil, and the transnational EUROCODE. The study is based on experimental results of 93 axially loaded concrete-filled tubular steel columns. This includes 36 unpublished, full scale experimental results by the authors and 57 results from the literature. The error of resistance models is determined by comparing experimental results for ultimate loads with code-predicted column resistances. Regression analysis is used to describe the variation of model error with column slenderness and to describe model uncertainty. The paper shows that Canadian and European codes are able to predict mean column resistance, since resistance models of these codes present detailed formulations for concrete confinement by a steel tube. ANSI/AISC and Brazilian codes have limited allowance for concrete confinement, and become very conservative for short columns. Reliability analysis is used to evaluate the safety level of code provisions. Reliability analysis includes model error and other random problem parameters like steel and concrete strengths, and dead and live loads. Design code provisions are evaluated in terms of sufficient and uniform reliability criteria. Results show that the four design codes studied provide uniform reliability, with the Canadian code being best in achieving this goal. This is a result of a well balanced code, both in terms of load combinations and resistance model. The European code is less successful in providing uniform reliability, a consequence of the partial factors used in load combinations. The paper also shows that reliability indexes of columns designed according to European code can be as low as 2.2, which is quite below target reliability levels of EUROCODE. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper evaluates the advantages of using hardwood short fibre pulp (eucalyptus) as alternative to softwood long fibre pulp (pinus) and polymer fibres, traditionally used in reinforcement of cement-based materials. The effects of cellulose fibre length on microstructure and on mechanical performance of fibre-cement composites were evaluated before and after accelerated ageing cycles. Hardwood pulp fibres were better dispersed in the cement matrix and provided higher number of fibres per unitary weight or volume, in relation to softwood long fibre pulp. The short reinforcing elements lead to an effective crack bridging of the fragile matrix, which contributes to the improvement of the mechanical performance of the composite after ageing. These promising results show the potential of eucalyptus short fibres for reducing costs by both the partial replacement of expensive synthetic fibres in air curing process and the energy savings during pulp refining. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present work is to evaluate the effect of surface modification of cellulose pulp fibres on the mechanical and microstructure of fibre-cement composites. Surface modification of the cellulose pulps was performed with Methacryloxypropyltri-methoxysilane (MPTS) and Aminopropyltri-ethoxysilane (APTS) in an attempt to improve their durability into fibre-cement composites. The surface modification showed significant influence on the microstructure of the composites on the fibre-matrix interface and in the mineralization of the fibre lumen as seen by scanning electron microscopy (SEM) with back-scattered electron (BSE) detector. Accelerated ageing cycles decreased modulus of rupture (MOR) and toughness (TE) of the composites. Composites reinforced with MPTS-modified fibres presented fibres free from cement hydration products, while APTS-modified fibres presented accelerated mineralization. Higher mineralization of the fibres led to higher embrittlement of the composite after accelerated ageing cycles. These observations are therefore very useful for understanding the mechanisms of degradation of fibre-cement composites. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Generalized Finite Element Method (GFEM) is employed in this paper for the numerical analysis of three-dimensional solids tinder nonlinear behavior. A brief summary of the GFEM as well as a description of the formulation of the hexahedral element based oil the proposed enrichment strategy are initially presented. Next, in order to introduce the nonlinear analysis of solids, two constitutive models are briefly reviewed: Lemaitre`s model, in which damage and plasticity are coupled, and Mazars`s damage model suitable for concrete tinder increased loading. Both models are employed in the framework of a nonlocal approach to ensure solution objectivity. In the numerical analyses carried out, a selective enrichment of approximation at regions of concern in the domain (mainly those with high strain and damage gradients) is exploited. Such a possibility makes the three-dimensional analysis less expensive and practicable since re-meshing resources, characteristic of h-adaptivity, can be minimized. Moreover, a combination of three-dimensional analysis and the selective enrichment presents a valuable good tool for a better description of both damage and plastic strain scatterings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents an alternative three-dimensional geometric non-linear frame formulation based on generalized unconstrained vector and positions to solve structures and mechanisms subjected to dynamic loading. The formulation is classified as total Lagrangian with exact kinematics description. The resulting element presents warping and non-constant transverse strain modes, which guarantees locking-free behavior for the adopted three-dimensional constitutive relation, Saint-Venant-Kirchhoff, for instance. The application of generalized vectors is an alternative to the use of finite rotations and rigid triad`s formulae. Spherical and revolute joints are considered and selected dynamic and static examples are presented to demonstrate the accuracy and generality of the proposed technique. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central issue for pillar design in underground coal mining is the in situ uniaxial compressive strength (sigma (cm)). The paper proposes a new method for estimating in situ uniaxial compressive strength in coal seams based on laboratory strength and P wave propagation velocity. It describes the collection of samples in the Bonito coal seam, Fontanella Mine, southern Brazil, the techniques used for the structural mapping of the coal seam and determination of seismic wave propagation velocity as well as the laboratory procedures used to determine the strength and ultrasonic wave velocity. The results obtained using the new methodology are compared with those from seven other techniques for estimating in situ rock mass uniaxial compressive strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to quantify the mass transfer velocity using turbulence parameters from simultaneous measurements of oxygen concentration fields and velocity fields. The surface divergence model was considered in more detail, using data obtained for the lower range of beta (surface divergence). It is shown that the existing models that use the divergence concept furnish good predictions for the transfer velocity also for low values of beta, in the range of this study. Additionally, traditional conceptual models, such as the film model, the penetration-renewal model, and the large eddy model, were tested using the simultaneous information of concentration and velocity fields. It is shown that the film and the surface divergence models predicted the mass transfer velocity for all the range of the equipment Reynolds number used here. The velocity measurements showed viscosity effects close to the surface, which indicates that the surface was contaminated with some surfactant. Considering the results, this contamination can be considered slight for the mass transfer predictions. (C) 2009 American Institute of Chemical Engineers AIChE J, 56: 2005-2017; 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this work was to investigate three packing materials (polyurethane foam, sugar-cane bagasse, and coconut fibre) for biofiltration of a gaseous mixture containing hydrogen sulphide (H(2)S). Mixed cultures were obtained from two sources, aerated submerged biofilters and activated sludge, and were utilised as inoculums. Biofilters reached 100% removal efficiency after two clays of operation. The empty bed residence time was 495 for each of the biofilters. The reactors were operated simultaneously, and the inlet concentrations of H(2)S varied between 184 and 644 ppmv during the long-term continuous operation of the biofilters (100 clays). Average removal efficiencies remained above 99.3%, taking into consideration the entire period of operation. Average elimination capacities reached by the biofilters packed with polyurethane foam, coconut fibre, and sugarcane bagasse were in the range of 17.8-66.6; 18.9-68.8, and 18.7-72.9g m(-3) h(-1), respectively. Finally, we concluded that the packing materials tested in this work are appropriate for the long-term biofiltration of hydrogen sulphide. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the influence of different carbon sources and the carbon/nitrogen ratio (C/N) on the production and main composition of insoluble extracellular polymers (EPS) produced in an anaerobic sequencing batch biofilm reactor (ASBBR) with immobilized biomass in polyurethane foam. The yield of EPS was 23.6 mg/g carbon, 13.3 mg/g carbon, 9.0 mg/g carbon and 1.4 mg/g carbon when the reactor was fed with glucose, soybean oil. fat acids, and meat extract, respectively. The yield of EPS decreased from 23.6 to 2.6 mg/g carbon as the C/N ratio was decreased from 13.6 to 3.4 gC/gN, using glucose as carbon source. EPS production was not observed under strict anaerobic conditions. The results suggest that the carbon source, microaerophilic conditions and high C/N ratio favor EPS production in the ASBBR used for wastewater treatment. Cellulose was the main exopolysaccharide observed in all experimental conditions. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An assessment is made of the atmospheric emissions from the life cycle of fuel ethanol coupled with the cogeneration of electricity from sugarcane in Brazil. The total exergy loss from the most quantitative relevant atmospheric emission substances produced by the life cycle of fuel ethanol is 3.26E+05 kJ/t of C(2)H(5)OH, Compared with the chemical exergy of 1 t of ethanol (calculated as 34.56E + 06 kJ). the exergy loss from the life cycle`s atmospheric emission represents 1.11% of the product`s exergy. The activity that most contributes to atmospheric emission chemical exergy losses is the harvesting of sugarcane through the methane emitted in burning. Suggestions for improved environmental quality and greater efficiency of the life cycle of fuel ethanol with cogenerated energy are: harvesting the sugarcane without burning, renewable fuels should be used in tractors, trucks and buses instead of fossil fuel and the transportation of products and input should be logistically optimized. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to analyze the interaction effects between temperature, feed strategy and COD/[SO(4)(2-)] levels, maintaining the same ratio, on sulfate and organic matter removal efficiency from a synthetic wastewater. This work is thus a continuation of Archilha et al. (2010) who studied the effect of feed strategy at 30 degrees C using different COD/[SO] ratios and levels. A 3.7-L anaerobic sequencing batch reactor with recirculation of the liquid phase and which contained immobilized biomass on polyurethane foam (AnSBBR) was used to treat 2.0 L synthetic wastewater in 8 h cycles. The temperatures of 15, 22.5 and 30 degrees C with two feed strategies were assessed: (a) batch and (b) batch followed by fed-batch. In strategy (a) the reactor was fed in 10 min with 2 L wastewater containing sulfate and carbon sources. In strategy (b) 1.2 L wastewater (containing only the sulfate source) was fed during the first 10 min of the cycle and the remaining 0.8 L (containing only the carbon source) in 240 min. Based on COD/[SO(4)(2-)] = 1 and on the organic matter (0.5 and 1.5 gCOD/L) and sulfate (0.5 and 1.5 gSO(4)(2-)/L) concentrations, the sulfate and organic matter loading rates applied were 1.5 and 4.5 g/L.d, i.e., same COD/[SO(4)(2-)] ratio (=1) but different levels (1.5/1.5 and 4.5/4.5 gCOD/gSO(4)(2-)). When reactor feed was 1.5 gCOD/L.d and 1.5 gSO(4)(2-)/L.d, gradual feeding (strategy b) showed to favor sulfate and organic matter removal in the investigated temperature range, indicating improved utilization of the electron donor for sulfate reduction. Sulfate removal efficiencies were 87.9; 86.3 and 84.4%, and organic matter removal efficiencies 95.2; 86.5 and 80.8% at operation temperatures of 30; 22.5 and 15 degrees C, respectively. On the other hand, when feeding was 4.5 gCOD/L.d and 4.5 gSO(4)(2-)/L.d, gradual feeding did not favor sulfate removal, indicating that gradual feeding of the electron donor did not improve sulfate reduction. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Safe application of the anaerobic sequencing biofilm batch reactor (ASBBR) still depends on deeper insight into its behavior when faced with common operational problems in wastewater treatments such as tolerance to abrupt variations in influent concentration, so called shock loads. To this end the current work shows the effect of organic shock loads on the performance of an ASBBR, with a useful volume of 5 L, containing 0.5-cm polyurethane cubes and operating at 30 degrees C with mechanical stirring of 500 rpm. In the assays 2 L of two types of synthetic wastewater were treated in 8-h cycles. Synthetic wastewater I was based on sucrose-amide-cellulose with concentration of 500 mg COD/L and synthetic wastewater II was based on volatile acids with concentration ranging from 500 to 2000 mg COD/L. Organic shock loads of 2-4 times the operation concentration were applied during one and two cycles. System efficiency was monitored before and after application of the perturbation. When operating with concentrations from 500 to 1000 mg COD/L and shock loads of 2-4 times the influent concentration during one or two cycles the system was able to regain stability after one cycle and the values of organic matter, total and intermediate volatile acids, bicarbonate alkalinity and pH were similar to those prior to the perturbations. At a concentration of 2000 mg COD/L the reactor appeared to be robust, regaining removal efficiencies similar to those prior to perturbation at shock loads twice the operation concentration lasting one cycle and stability was recovered after two cycles. However, for shock loads twice the operation concentration during two cycles and shock loads four times the operation concentration during one or two cycles filtered sample removal efficiency decreased to levels different from those prior to perturbation, on an average of 90-80%, approximately, yet the system managed to attain stability within two cycles after shock application. Therefore, this investigation envisions the potential of full scale application of this type of bioreactor which showed robustness to organic shock loads, despite discontinuous operation and the short times available for treating total wastewater volume. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes the influence of carbon source and inoculum origin on the dynamics of biomass adhesion to an inert support in anaerobic reactors fed with acid mine drainage. Formic acid, lactic acid and ethanol were used as carbon sources. Two different inocula were evaluated: one taken from an UASB reactor and other from the sediment of a uranium mine. The values of average colonization rates and the maximum biomass concentration (C(max)) were inversely proportional to the number of carbon atoms in each substrate. The highest C(max) value (0.35 g TVS g(-1) foam) was observed with formic acid and anaerobic sludge as inoculum. Maximum colonization rates (v(max)) were strongly influenced by the type of inoculum when ethanol and lactic acid were used. For both carbon sources, the use of mine sediment as inoculum resulted in a v(max) of 0.013 g TVS g(-1) foam day(-1), whereas 0.024 g TVS g(-1) foam day(-1) was achieved with anaerobic sludge. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cooling curve analysis was used to evaluate the effect of corrosion inhibitor additives and antioxidants on the quenching properties of soybean oil. The results showed that addition of corrosion inhibitors provided significant changes in the cooling curve behavior and of the yellow metal corrosion inhibitors evaluated tolyltriazole exhibits the greatest rate acceleration of heat transfer. However, the presence of antioxidants did not exhibit a significant effect on quenching properties of soybean oil. (C)2010 Journal of Mechanical Engineering. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The different types of thermal crystallisation behaviours observed during continuous heating of M-based metallic glasses have been successfully associated with the topological instability. criterion, which is simply calculated from the alloy composition and metallic radii of the alloying elements and aluminium. In the present work, we report on new results evidencing the correlation between the values of X and the crystallisation behaviours in Al-based alloys of the Al-Ni-Ce system and we compare the glass-forming abilities of alloys designed with compositions corresponding to the same topological instability condition. The results are discussed in terms of compositional and topological aspects emphasizing the relevance of the different types of clusters in the amorphous phase in defining the stability of the glass and the types of thermal crystallisation. (C) 2008 Elsevier B.V. All rights reserved.