987 resultados para Capacity Expansion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The last 30 years have seen Fuzzy Logic (FL) emerging as a method either complementing or challenging stochastic methods as the traditional method of modelling uncertainty. But the circumstances under which FL or stochastic methods should be used are shrouded in disagreement, because the areas of application of statistical and FL methods are overlapping with differences in opinion as to when which method should be used. Lacking are practically relevant case studies comparing these two methods. This work compares stochastic and FL methods for the assessment of spare capacity on the example of pharmaceutical high purity water (HPW) utility systems. The goal of this study was to find the most appropriate method modelling uncertainty in industrial scale HPW systems. The results provide evidence which suggests that stochastic methods are superior to the methods of FL in simulating uncertainty in chemical plant utilities including HPW systems in typical cases whereby extreme events, for example peaks in demand, or day-to-day variation rather than average values are of interest. The average production output or other statistical measures may, for instance, be of interest in the assessment of workshops. Furthermore the results indicate that the stochastic model should be used only if found necessary by a deterministic simulation. Consequently, this thesis concludes that either deterministic or stochastic methods should be used to simulate uncertainty in chemical plant utility systems and by extension some process system because extreme events or the modelling of day-to-day variation are important in capacity extension projects. Other reasons supporting the suggestion that stochastic HPW models are preferred to FL HPW models include: 1. The computer code for stochastic models is typically less complex than a FL models, thus reducing code maintenance and validation issues. 2. In many respects FL models are similar to deterministic models. Thus the need for a FL model over a deterministic model is questionable in the case of industrial scale HPW systems as presented here (as well as other similar systems) since the latter requires simpler models. 3. A FL model may be difficult to "sell" to an end-user as its results represent "approximate reasoning" a definition of which is, however, lacking. 4. Stochastic models may be applied with some relatively minor modifications on other systems, whereas FL models may not. For instance, the stochastic HPW system could be used to model municipal drinking water systems, whereas the FL HPW model should or could not be used on such systems. This is because the FL and stochastic model philosophies of a HPW system are fundamentally different. The stochastic model sees schedule and volume uncertainties as random phenomena described by statistical distributions based on either estimated or historical data. The FL model, on the other hand, simulates schedule uncertainties based on estimated operator behaviour e.g. tiredness of the operators and their working schedule. But in a municipal drinking water distribution system the notion of "operator" breaks down. 5. Stochastic methods can account for uncertainties that are difficult to model with FL. The FL HPW system model does not account for dispensed volume uncertainty, as there appears to be no reasonable method to account for it with FL whereas the stochastic model includes volume uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the European Union under the Common Agricultural Policy (CAP) milk production was restricted by milk quotas since 1984. However, due to recent changes in the Common Agricultural Policy (CAP), milk quotas will be abolished by 2015. Therefore, the European dairy sector will soon face an opportunity, for the first time in a generation, to expand. Numerous studies have shown that milk production in Ireland will increase significantly post quotas (Laepple and Hennessy (2010), Donnellan and Hennessy (2007) and Lips and Reider (2005)). The research in this thesis explored milk transport and dairy product processing in the Irish dairy processing sector in the context of milk quota removal and expansion by 2020. In this study a national milk transport model was developed for the Irish dairy industry, the model was used to examine different efficiency factors in milk transport and to estimate milk transport costs post milk quota abolition. Secondly, the impact of different milk supply profiles on milk transport costs was investigated using the milk transport model. Current processing capacity in Ireland was compared against future supply, it was concluded that additional milk processing capacity would not be sufficient to process the additional milk. Thirdly, the milk transport model was used to identify the least cost locations (based on transport costs) to process the additional milk supply in 2020. Finally, an optimisation model was developed to identify the optimum configuration for the Irish dairy processing sector in 2020 taking cognisance of increasing transport costs and decreasing processing costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flower industry has a reputation for heavy usage of toxic chemicals and polluting the environment, enormous consumption of water, and poor working condition and low wage level in various parts of the world. It is unfortunate that this industry is adamant to change and repeating the same mistakes in Ethiopia. Because of this, - there is a growing concern among the general public and the international community about sustainability of the Ethiopian flower industry. Consequently, working conditions in the flower industry, impacts of wage income on the livelihoods of employees, coping strategies of low wage flower farm workers, impacts of flower farms on the livelihoods of local people and environmental pollution and conflict, were analysed. Both qualitative and quantitative research methods were employed. Four quantitative data sets: labour practice, employees’ income and expenditure, displaced household, and flower grower views survey were collected between 2010 and 2012. Robust regression to identify the determinants of wage levels, and Multinomial logit to identify the determinants of coping strategies of flower farm workers and displaced households were employed. The findings show the working conditions in flower farms are characterized by low wages, job insecurity and frequent violation of employees’ rights, and poor safety measures. To ensure survival of their family, land dispossessed households adopt a wide range of strategies including reduction in food consumption, sharing oxen, renting land, share cropping, and shifting staple food crops. Most experienced scarcity of water resources, lack of grazing areas, death of herds and reduced numbers of livestock due to water source pollution. Despite the Ethiopian government investment in attracting and creating conducive environment for investors, not much was accomplished when it comes to enforcing labour laws and environmental policies. Flower farm expansion in Ethiopia, as it is now, can be viewed as part of the global land and water grab and is not all inclusive and sustainable. Several recommendations are made to improve working conditions, maximize the benefits of flower industry to the society, and to the country at large.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using Si(100) with different dopant type (n++-type (As) or p-type (B)), it is shown how metal-assisted chemically (MAC) etched silicon nanowires (Si NWs) can form with rough outer surfaces around a solid NW core for p-type NWs, and a unique, defined mesoporous structure for highly doped n-type NWs. High resolution electron microscopy techniques were used to define the characteristic roughening and mesoporous structure within the NWs and how such structures can form due to a judicious choice of carrier concentration and dopant type. Control of roughness and internal mesoporosity is demonstrated during the formation of Si NWs from highly doped n-type Si(100) during electroless etching through a systematic investigation of etching parameters (etching time, AgNO3 concentration, %HF and temperature). Raman scattering measurements of the transverse optical phonon confirm quantum size effects and phonon scattering in mesoporous wires associated with the etching condition, including quantum confinement effects for the nanocrystallites of Si comprising the internal structure of the mesoporous NWs. Laser power heating of NWs confirms phonon confinement and scattering from internal mesoporosity causing reduced thermal conductivity. The Li+ insertion and extraction characteristics at n-type and p-type Si(100) electrodes with different carrier density and doping type are investigated by cyclic voltammetry and constant current measurements. The insertion and extraction potentials are demonstrated to vary with cycling and the occurrence of an activation effect is shown in n-type electrodes where the charge capacity and voltammetric currents are found to be much higher than p-type electrodes. X-ray photo-electron spectroscopy (XPS) and Raman scattering demonstrate that highly doped n-type Si(100) retains Li as a silicide and converts to an amorphous phase as a two-step phase conversion process. The findings show the succinct dependence of Li insertion and extraction processes for uniformly doped Si(100) single crystals and how the doping type and its effect on the semiconductor-solution interface dominate Li insertion and extraction, composition, crystallinity changes and charge capacity. The effect of dopant, doping density and porosity of MAC etched Si NWs are investigated. The CV response is shown to change in area (current density) with increasing NW length and in profile shape with a changing porosity of the Si NWs. The CV response also changes with scan rate indicative of a transition from intercalation or alloying reactions, to pseudocapactive charge storage at higher scan rates and for p-type NWs. SEM and TEM show a change in structure of the NWs after Li insertion and extraction due to expansion and contraction of the Si NWs. Galvanostatic measurements show the cycling behavior and the Coulombic efficiency of the Si NWs in comparison to their bulk counterparts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A supersonic expansion containing acetylene seeded into Ar and produced from a circular nozzle is investigated using CW/cavity ring down spectroscopy, in the 1.5 μm range. The results, also involving experiments with pure acetylene and acetylene-He expansions, as well as slit nozzles, demonstrate that the denser central section in the expansion is slightly heated by the formation of acetylene aggregates, resulting into a dip in the monomer absorption line profiles. Acetylene-Ar aggregates are also formed at the edge of the circular nozzle expansion cone. © 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrodynamic structure of an axisymmetric supersonic expansion can be regarded as a series of concentric divergent cones, with decreasing particle densities as the cone angle increases. Different groups of molecules therefore contribute to high-resolution absorption line shapes when optically probing the expansion in a direction perpendicular to the jet axis. These groups are distinguished by the cone angle, inducing a specific Doppler shift, and by the particle density, contributing a specific weight to the absorption intensity. As a result different broader line profiles are observed compared to room temperature spectra. This effect is investigated here selecting as the working example the R(0), ν3 absorption line in N2O recorded using a Fourier transform interferometer. Independent impact pressure and quadrupole mass spectrometric measurements are performed leading to two complementary maps of the expansion, allowing the recorded absorption line shape to be quantitatively modeled. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predicting from first-principles calculations whether mixed metallic elements phase-separate or form ordered structures is a major challenge of current materials research. It can be partially addressed in cases where experiments suggest the underlying lattice is conserved, using cluster expansion (CE) and a variety of exhaustive evaluation or genetic search algorithms. Evolutionary algorithms have been recently introduced to search for stable off-lattice structures at fixed mixture compositions. The general off-lattice problem is still unsolved. We present an integrated approach of CE and high-throughput ab initio calculations (HT) applicable to the full range of compositions in binary systems where the constituent elements or the intermediate ordered structures have different lattice types. The HT method replaces the search algorithms by direct calculation of a moderate number of naturally occurring prototypes representing all crystal systems and guides CE calculations of derivative structures. This synergy achieves the precision of the CE and the guiding strengths of the HT. Its application to poorly characterized binary Hf systems, believed to be phase-separating, defines three classes of alloys where CE and HT complement each other to uncover new ordered structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regenerative medicine for complex tissues like limbs will require the provision or activation of precursors for different cell types, in the correct number, and with the appropriate instructions. These strategies can be guided by what is learned from spectacular events of natural limb or fin regeneration in urodele amphibians and teleost fish. Following zebrafish fin amputation, melanocyte stripes faithfully regenerate in tandem with complex fin structures. Distinct populations of melanocyte precursors emerge and differentiate to pigment regenerating fins, yet the regulation of their proliferation and patterning is incompletely understood. Here, we found that transgenic increases in active Ras dose-dependently hyperpigmented regenerating zebrafish fins. Lineage tracing and marker analysis indicated that increases in active Ras stimulated the in situ amplification of undifferentiated melanocyte precursors expressing mitfa and kita. Active Ras also hyperpigmented early fin regenerates of kita mutants, which are normally devoid of primary regeneration melanocytes, suppressing defects in precursor function and survival. By contrast, this protocol had no noticeable impact on pigmentation by secondary regulatory melanocyte precursors in late-stage kita regenerates. Our results provide evidence that Ras activity levels control the repopulation and expansion of adult melanocyte precursors after tissue loss, enabling the recovery of patterned melanocyte stripes during zebrafish appendage regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While numerous studies find that deep-saline sandstone aquifers in the United States could store many decades worth of the nation's current annual CO 2 emissions, the likely cost of this storage (i.e. the cost of storage only and not capture and transport costs) has been harder to constrain. We use publicly available data of key reservoir properties to produce geo-referenced rasters of estimated storage capacity and cost for regions within 15 deep-saline sandstone aquifers in the United States. The rasters reveal the reservoir quality of these aquifers to be so variable that the cost estimates for storage span three orders of magnitude and average>$100/tonne CO 2. However, when the cost and corresponding capacity estimates in the rasters are assembled into a marginal abatement cost curve (MACC), we find that ~75% of the estimated storage capacity could be available for<$2/tonne. Furthermore, ~80% of the total estimated storage capacity in the rasters is concentrated within just two of the aquifers-the Frio Formation along the Texas Gulf Coast, and the Mt. Simon Formation in the Michigan Basin, which together make up only ~20% of the areas analyzed. While our assessment is not comprehensive, the results suggest there should be an abundance of low-cost storage for CO 2 in deep-saline aquifers, but a majority of this storage is likely to be concentrated within specific regions of a smaller number of these aquifers. © 2011 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pharmacologic, biochemical, and genetic analyses have demonstrated the existence of multiple alpha 2-adrenergic receptor (alpha 2AR) subtypes. We have cloned a human alpha 2AR by using the polymerase chain reaction with oligonucleotide primers homologous to conserved regions of the previously cloned alpha 2ARs, the genes for which are located on human chromosomes 4 (C4) and 10 (C10). The deduced amino acid sequence encodes a protein of 450 amino acids whose putative topology is similar to that of the family of guanine nucleotide-binding protein-coupled receptors, but whose structure most closely resembles that of the alpha 2ARs. Competition curve analysis of the binding properties of the receptor expressed in COS-7 cells with a variety of adrenergic ligands demonstrates a unique alpha 2AR pharmacology. Hybridization with somatic cell hybrids shows that the gene for this receptor is located on chromosome 2. Northern blot analysis of various rat tissues shows expression in liver and kidney. The unique pharmacology and tissue localization of this receptor suggest that this is an alpha 2AR subtype not previously identified by classical pharmacological or ligand binding approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue-engineered skeletal muscle can serve as a physiological model of natural muscle and a potential therapeutic vehicle for rapid repair of severe muscle loss and injury. Here, we describe a platform for engineering and testing highly functional biomimetic muscle tissues with a resident satellite cell niche and capacity for robust myogenesis and self-regeneration in vitro. Using a mouse dorsal window implantation model and transduction with fluorescent intracellular calcium indicator, GCaMP3, we nondestructively monitored, in real time, vascular integration and the functional state of engineered muscle in vivo. During a 2-wk period, implanted engineered muscle exhibited a steady ingrowth of blood-perfused microvasculature along with an increase in amplitude of calcium transients and force of contraction. We also demonstrated superior structural organization, vascularization, and contractile function of fully differentiated vs. undifferentiated engineered muscle implants. The described in vitro and in vivo models of biomimetic engineered muscle represent enabling technology for novel studies of skeletal muscle function and regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is commonly accepted that aerobic exercise increases hippocampal neurogenesis, learning and memory, as well as stress resiliency. However, human populations are widely variable in their inherent aerobic fitness as well as their capacity to show increased aerobic fitness following a period of regimented exercise. It is unclear whether these inherent or acquired components of aerobic fitness play a role in neurocognition. To isolate the potential role of inherent aerobic fitness, we exploited a rat model of high (HCR) and low (LCR) inherent aerobic capacity for running. At a baseline, HCR rats have two- to three-fold higher aerobic capacity than LCR rats. We found that HCR rats also had two- to three- fold more young neurons in the hippocampus than LCR rats as well as rats from the heterogeneous founder population. We then asked whether this enhanced neurogenesis translates to enhanced hippocampal cognition, as is typically seen in exercise-trained animals. Compared to LCR rats, HCR rats performed with high accuracy on tasks designed to test neurogenesis-dependent pattern separation ability by examining investigatory behavior between very similar objects or locations. To investigate whether an aerobic response to exercise is required for exercise-induced changes in neurogenesis and cognition, we utilized a rat model of high (HRT) and low (LRT) aerobic response to treadmill training. At a baseline, HRT and LRT rats have comparable aerobic capacity as measured by a standard treadmill fit test, yet after a standardized training regimen, HRT but not LRT rats robustly increase their aerobic capacity for running. We found that sedentary LRT and HRT rats had equivalent levels of hippocampal neurogenesis, but only HRT rats had an elevation in the number of young neurons in the hippocampus following training, which was positively correlated with accuracy on pattern separation tasks. Taken together, these data suggest that a significant elevation in aerobic capacity is necessary for exercise-induced hippocampal neurogenesis and hippocampal neurogenesis-dependent learning and memory. To investigate the potential for high aerobic capacity to be neuroprotective, doxorubicin chemotherapy was administered to LCR and HCR rats. While doxorubicin induces a progressive decrease in aerobic capacity as well as neurogenesis, HCR rats remain at higher levels on those measures compared to even saline-treated LCR rats. HCR and LCR rats that received exercise training throughout doxorubicin treatment demonstrated positive effects of exercise on aerobic capacity and neurogenesis, regardless of inherent aerobic capacity. Overall, these findings demonstrate that inherent and acquired components of aerobic fitness play a crucial role not only in the cardiorespiratory system but also the fitness of the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dopamine is an important central nervous system transmitter that functions through two classes of receptors (D1 and D2) to influence a diverse range of biological processes in vertebrates. With roles in regulating neural activity, behavior, and gene expression, there has been great interest in understanding the function and evolution dopamine and its receptors. In this study, we use a combination of sequence analyses, microsynteny analyses, and phylogenetic relationships to identify and characterize both the D1 (DRD1A, DRD1B, DRD1C, and DRD1E) and D2 (DRD2, DRD3, and DRD4) dopamine receptor gene families in 43 recently sequenced bird genomes representing the major ordinal lineages across the avian family tree. We show that the common ancestor of all birds possessed at least seven D1 and D2 receptors, followed by subsequent independent losses in some lineages of modern birds. Through comparisons with other vertebrate and invertebrate species we show that two of the D1 receptors, DRD1A and DRD1B, and two of the D2 receptors, DRD2 and DRD3, originated from a whole genome duplication event early in the vertebrate lineage, providing the first conclusive evidence of the origin of these highly conserved receptors. Our findings provide insight into the evolutionary development of an important modulatory component of the central nervous system in vertebrates, and will help further unravel the complex evolutionary and functional relationships among dopamine receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Miyun Reservoir, the only surface water source for Beijing city, has experienced water supply decline in recent decades. Previous studies suggest that both land use change and climate contribute to the changes of water supply in this critical watershed. However, the specific causes of the decline in the Miyun Reservoir are debatable under a non-stationary climate in the past 4 decades. The central objective of this study was to quantify the separate and collective contributions of land use change and climate variability to the decreasing inflow into the Miyun Reservoir during 1961–2008. Different from previous studies on this watershed, we used a comprehensive approach to quantify the timing of changes in hydrology and associated environmental variables using the long-term historical hydrometeorology and remote-sensing-based land use records. To effectively quantify the different impacts of the climate variation and land use change on streamflow during different sub-periods, an annual water balance model (AWB), the climate elasticity model (CEM), and a rainfall–runoff model (RRM) were employed to conduct attribution analysis synthetically. We found a significant (p  <  0.01) decrease in annual streamflow, a significant positive trend in annual potential evapotranspiration (p  <  0.01), and an insignificant (p  >  0.1) negative trend in annual precipitation during 1961–2008. We identified two streamflow breakpoints, 1983 and 1999, by the sequential Mann–Kendall test and double-mass curve. Climate variability alone did not explain the decrease in inflow to the Miyun Reservoir. Reduction of water yield was closely related to increase in actual evapotranspiration due to the expansion of forestland and reduction in cropland and grassland, and was likely exacerbated by increased water consumption for domestic and industrial uses in the basin. The contribution to the observed streamflow decline from land use change fell from 64–92 % during 1984–1999 to 36–58 % during 2000–2008, whereas the contribution from climate variation climbed from 8–36 % during the 1984–1999 to 42–64 % during 2000–2008. Model uncertainty analysis further demonstrated that climate warming played a dominant role in streamflow reduction in the most recent decade (i.e., 2000s). We conclude that future climate change and variability will further challenge the water supply capacity of the Miyun Reservoir to meet water demand. A comprehensive watershed management strategy needs to consider the climate variations besides vegetation management in the study basin.