841 resultados para Ball milling
Resumo:
For many years materials such as quarried sand, anthracite, and granular activated carbon have been the principal media-products traditionally used in water and wastewater filtration plants. Pebble Matrix Filtration (PMF) is a novel non-chemical, sustainable pre-treatment method of protecting Slow Sand Filters (SSF) from high turbidity during heavy monsoon periods. PMF uses sand and pebbles as the filter media and the sustainability of this new technology might depend on availability and supply of pebbles and sand, both finite resources. In many countries there are two principal methods of obtaining pebbles and sand, namely dredging from rivers and beaches, and due to the scarcity of these resources in some countries the cost of pebbles is often 4-5 times higher than that of sand. In search for an alternative medium to pebbles after some preliminary laboratory tests conducted in Colombo-Sri Lanka, Poznan-Poland and Cambridge-UK, a 100-year-old brick factory near Sudbury, Suffolk, has produced hand-made clay pebbles satisfying the PMF quality requirements. As an alternative to sand, crushed recycled glass from a UK supplier was used and the PMF system was operated together with hand-made clay balls in the laboratory for high turbidity removal effectively. The results of laboratory experiments with alternative media are presented in this paper. There are potential opportunities for recycled crushed glass and clay ball manufacturing processes in some countries where they can be used as filter media.
Resumo:
OBJECTIVES To describe protocol and interobserver agreements of an instrument to evaluate nutrition and physical activity environments at child care. METHODS Interobserver data were collected from 9 child care centers, through direct observation and document review (17 observer pairs). RESULTS Mean agreement between observer pairs was 87.26% and 79.29% for the observation and document review, respectively. Items with lower agreement were primarily staff behavior, counting across the day/week, and policy classifications. CONCLUSIONS Although some revisions are required, the interobserver agreement for the environment and policy assessment and observation (EPAO instrument) appears to be quite good for assessing the nutrition and physical activity environment of child care centers.
Resumo:
Background Promoting participation physical activity (PA) is an important means of promoting healthy growth and development in children with cerebral palsy (CP). The ActiGraph is a uniaxial accelerometer that provides a realtime measure of PA intensity, duration and frequency. Its small, light weight design makes it a promising measure of activity in children with CP. To date no study has validated the use of accelerometry as a measure of PA in ambulant adolescents with CP. Objectives To evaluate the validity of the ActiGraph accelerometer for measuring PA intensity in adolescents with CP, using oxygen consumption (VO2), measured using portable indirect calorimetry (Cosmed K4b2), as the criterion measure. Design Validation Study Participants/Setting: Ambulant adolescents with CP aged 10–16 years, GMFCS rating of I-III. The recruitment target is 30 (10 in each GMFCS level). Materials/Methods Participants wore the ActiGraph (counts/min) and a Cosmed K4b2 indirect calorimeter (mL/kg/min) during six activity trials: quiet sitting (QS), comfortable paced walking (CPW), brisk paced walking (BPW), fast paced walking (FPW), a ball-kicking protocol (KP) and a ball-throwing protocol (TP). MET levels (multiples of resting metabolism) for each activity were predicted from ActiGraph counts using the Freedson age-specific equation (Freedson et al. 2005) and compared with actual MET levels measured by the Cosmed. Predicted and measured METs for each activity trial were classified as light (> 1.5 METs and <4.6 METs) or moderate to vigorous intensity (≥ 4.6 METs). Results To date 36 bouts of activity have been completed (6 participants x 6 activities). Mean VO2 increased linearly as the intensity of the walking activity increased (CPW=9.47±2.16, BPW=14.06±4.38, FPW=19.21±5.68 ml/kg/min) and ActiGraph counts reflected this pattern (CPW=1099±574, BPW=2233±797 FPW=4707±1013 counts/min). The throwing protocol recording the lowest VO2 (TP=7.50±3.86 ml/kg/min) and lowest overall counts/min (TP=31±27 counts/min). When each of the 36 bouts were classified as either light or moderate to vigorous intensity using measured VO2 as the criterion measure, the Freedson equation correctly classified 28 from 36 bouts (78%). Conclusion/Clinical Implications These preliminary findings suggest that there is a relationship between the intensity of PA and direct measure of oxygen consumption and that therefore the ActiGraph may be a promising tool for accurately measuring free living PA in the community. Further data collection of the complete sample will enable secondary analysis of the relationship between PA and severity of CP (GMFCS level).
Resumo:
Given the level of debate and theorising in Western thought on the topic of justice, it is curious that the concept of injustice has not attracted the same attention. While many schools of thought have sought to address various injustices, most define injustice solely as the opposite of their vision of a just society – it seems they have not been interested in exploring injustice per se. With this as a starting point, Eric Heinze’s The Concept of Injustice addresses this oversight and, by taking injustice itself as an object of analysis, adds a new dimension to these discussions...
Resumo:
The capacity to identify an unknown organism using the DNA sequence from a single gene has many applications. These include the development of biodiversity inventories (Janzen et al. 2005), forensics (Meiklejohn et al. 2011), biosecurity (Armstrong and Ball 2005), and the identification of cryptic species (Smith et al. 2006). The popularity and widespread use (Teletchea 2010) of the DNA barcoding approach (Hebert et al. 2003), despite broad misgivings (e.g., Smith 2005; Will et al. 2005; Rubinoff et al. 2006), attest to this. However, one major shortcoming to the standard barcoding approach is that it assumes that gene trees and species trees are synonymous, an assumption that is known not to hold in many cases (Pamilo and Nei 1988; Funk and Omland 2003). Biological processes that violate this assumption include incomplete lineage sorting and interspecific hybridization (Funk and Omland 2003). Indeed, simulation studies indicate that the concatenation approach (in which these two processes are ignored) can lead to statistically inconsistent estimation of the species tree (Kubatko and Degnan 2007)...
Resumo:
This paper describes a novel vision based texture tracking method to guide autonomous vehicles in agricultural fields where the crop rows are challenging to detect. Existing methods require sufficient visual difference between the crop and soil for segmentation, or explicit knowledge of the structure of the crop rows. This method works by extracting and tracking the direction and lateral offset of the dominant parallel texture in a simulated overhead view of the scene and hence abstracts away crop-specific details such as colour, spacing and periodicity. The results demonstrate that the method is able to track crop rows across fields with extremely varied appearance during day and night. We demonstrate this method can autonomously guide a robot along the crop rows.
Resumo:
In the Australian sugar industry, sugar cane is smashed into a straw like material by hammers before being squeezed between large rollers to extract the sugar juice. The straw like material is initially called prepared cane and then bagasse as it passes through successive roller milling units. The sugar cane materials are highly compressible, have high moisture content, are fibrous, and they resemble some peat soils in both appearance and mechanical behaviour. A promising avenue to improve the performance of milling units for increased throughput and juice extraction, and to reduce costs is by modelling of the crushing process. To achieve this, it is believed necessary that milling models should be able to reproduce measured bagasse behaviour. This investigation sought to measure the mechanical (compression, shear, and volume) behaviour of prepared cane and bagasse, to identify limitations in currently used material models, and to progress towards a material model that can predict bagasse behaviour adequately. Tests were carried out using a modified direct shear test equipment and procedure at most of the large range of pressures occurring in the crushing process. The investigation included an assessment of the performance of the direct shear test for measuring bagasse behaviour. The assessment was carried out using finite element modelling. It was shown that prepared cane and bagasse exhibited critical state behavior similar to that of soils and the magnitudes of material parameters were determined. The measurements were used to identify desirable features for a bagasse material model. It was shown that currently used material models had major limitations for reproducing bagasse behaviour. A model from the soil mechanics literature was modified and shown to achieve improved reproduction while using magnitudes of material parameters that better reflected the measured values. Finally, a typical three roller mill pressure feeder configuration was modelled. The predictions and limitations were assessed by comparison to measured data from a sugar factory.
Resumo:
A better understanding of the behaviour of prepared cane and bagasse, and the ability to model the mechanical behaviour of bagasse as it is squeezed in a milling unit to extract juice, would help identify how to improve the current process. There are opportunities to decrease bagasse moisture from a milling unit. The behaviour of bagasse in chutes is poorly understood. Previous investigations have shown that juice flow through bagasse obeys Darcy’s permeability law, that the grip of the rough surface of the grooves on the bagasse can be represented by the Mohr-Coulomb failure criterion for soils, and that the internal mechanical behaviour of the bagasse is critical state behaviour similar to that for sand and clay. Progress has been made in the last 11 years towards implementing a mechanical model for bagasse in finite element software. The objective is to be able to correctly simulate various simple mechanical loading conditions measured in the laboratory. Combining these behaviours together is thought to have a high probability of reproducing the complicated stress conditions in a milling unit. This paper reports on progress made towards modelling the fifth and final (and most challenging) of the simple loading conditions: the shearing of heavily over-consolidated bagasse, using a specific model for bagasse in a multi-element simulation.
Resumo:
A better understanding of the behaviour of prepared cane and bagasse, and the ability to model the mechanical behaviour of bagasse as it is squeezed in a milling unit to extract juice, would help identify how to improve the current process. For example, there are opportunities to decrease bagasse moisture from a milling unit. Also, the behaviour of bagasse in chutes is poorly understood. Previous investigations have shown that juice flow through bagasse obeys Darcy’s permeability law, that the grip of the rough surface of the grooves on the bagasse can be represented by the Mohr-Coulomb failure criterion for soils, and that the internal mechanical behaviour of the bagasse is critical state behaviour similar to that for sand and clay. Progress has been made in the last ten years towards implementing a mechanical model for bagasse in finite element software. The objective has been to be able to simulate simple mechanical loading conditions measured in the laboratory, which, when combined together, have a high probability of reproducing the complicated stress conditions in a milling unit. This paper reports on the successful simulation of part of the fifth and final (and most challenging) loading condition, the shearing of heavily over-consolidated bagasse, and determining material property values through the use of powerful and free parameter estimation software.
Resumo:
A better understanding of the behaviour of prepared cane and bagasse, and the ability to model the mechanical behaviour of bagasse as it is squeezed in a milling unit to extract juice, would help identify how to improve the current process, for example to reduce final bagasse moisture. Previous investigations have proven that juice flow through bagasse obeys Darcy’s permeability law, that the grip of the rough surface of the grooves on the bagasse can be represented by the Mohr-Coulomb failure criterion for soils, and that the internal mechanical behaviour of the bagasse is critical state behaviour similar to that for sand and clay. Current Finite Element Models (FEM) available in commercial software have adequate permeability models. However, no commercially available software seems to contain an adequate mechanical model for bagasse. The same software contains a few material models for soil and other materials, while the coding of hundreds of developed models for soil and other materials remains confidential at universities and government research centres. Progress has been made in the last ten years towards implementing a mechanical model for bagasse in finite element software code. This paper builds on that progress and carries out a further step towards obtaining an adequate material model. The fifth and final loading condition outlined previously, shearing of heavily over-consolidated bagasse, is outlined.
Resumo:
Use of the hand is vital in working life due to the grabbing and pinching it performs. Spherical grip is the most commonly used, due to similarity to the gripping of a computer mouse. Knowledge of its execution and the involved elements is essential. Analysis of this exertion with surface electromyography devices (to register muscular activity) and accelerometer devices (to register movement values ) can provide multiple variables. Six subjects performed ball gripping and registered real-time electromyography (thenar region, hypothenar region, first dorsal interosseous, flexors of the wrist, flexor carpi ulnaris and extensors of the wrist muscles) and accelerometer (thumb, index, middle, ring, pinky and palm) values. The obtained data was resampled “R software” and processed “Matlab Script” based on an automatic numerical sequence recognition program. Electromyography values were normalized on the basis of maximum voluntary contraction, whilst modular values were calculated for the acceleration vector. After processing and analysing the obtained data and signal, it was possible to identify five stages of movement in accordance with the module vector from the palm. The statistical analysis of the variables was descriptive: average and standard deviations. The outcome variables focus on the variations of the modules of the vector (between the maximum and minimum values of each module and phase) and the maximum values of the standardized electromyography of each muscle. Analysis of movement through accelerometer and electromyography variables can give us an insight into the operation of spherical grip. The protocol and treatment data can be used as a system to complement existing assessments in the hand.