986 resultados para BENZOTHIOPYRANOINDAZOLE ANTICANCER ANALOGS


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical study of the orchid Maxillaria picta resulted in the isolation of the bioactive stilbenes phoyunbene B and phoyunbene C, in addition to four phenolic acids, one xanthone, steroidal compounds and two triterpenes. Crude extract, fractions, subfractions and the isolated xanthone were evaluated for anticancer activity against human tumor cell lines and against evolutionary forms of T. cruzi and L. amazonensis. The structures of the compounds were determined by GC-MS, and ¹H NMR, 13C NMR spectral methods as well as bidimensional techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Podophyllotoxin is the most studied lignan because of its use as an antimitotic agent and because it is a precursor of pharmacologically active derivatives. This review describes the anticancer activities of podophyllotoxin and the different processes that have been developed for its extraction and purification from Podophyllum spp. In addition, the synthesis routes of this compound and the development of three semi-synthetic procedures to obtain etoposide, teniposide, and Etopophos are detailed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AbstractThis paper presents a technological innovation that uses a subclass of glycerophospholipids as a booster biocide in antifouling paint. These glycerophospholipid PAF-analogs are economically and environmentally viable compounds because they are synthesized from a metal-free raw material source-soybean lecithin. The synthesis, which involves transesterification followed by an alkylation reaction, produced a mixture of glycerophospholipids that were characterized by mass spectrometry. Evaluation of the antifouling performance with field tests showed that the replacement of ordinary halogenated booster biocide with the synthesized product gave a better efficiency and an exceptional antifouling activity with a significant reduction in the coverage of the fouling macro-organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the single-step derivatization reaction of a biopolymer based onL -lysine with D -biotin analogs:Co -poly(L -lysine)-graft-(ε-N -[X-D-biotinyl]-L -lysine) (PLL-X-Biotin). The valeric acid carboxylate of D -biotin is activated to an NHS ester for direct modification of amine groups in proteins and other macromolecules. NHS esters react by nucleophilic attack of an amine in the carbonyl group, releasing the NHS group, and forming a stable amide linkage. NHS-X-Biotin is the simplest biotinylation reagent commercially available. In contrast withD -biotin, it has a longer spacer arm off the valeric acid side chain allowing better binding potential for avidin or streptavidin probes. Derivatization of poly(L -lysine) (PLL) with NHS-X-Biotin led to a copolymer PLL-X-Biotin. UV-Visible, IR-FT and 1H NMR characteristics derived from synthesis are briefly discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper demonstrates the application of functional GGA hybrids, with long-range corrections, for the calculation of the electronic properties of artemisinin and two of its derivatives - artemether e artesunate. Due to the relatively large amount of data obtained, the statistical method of Principal Component Analysis was employed. The functionals of the WB97 family are observed to be the most appropriate for the determining of reactivity indexes, which are the principal descriptors that, probably, are associated with the antimalarial and anticancer properties of this group of molecules. In addition, it was also observed that all the functionals obtained satisfactorily describe the geometric properties of the studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The currently used forms of cancer therapy are associated with drug resistance and toxicity to healthy tissues. Thus, more efficient methods are needed for cancer-specific induction of growth arrest and programmed cell death, also known as apoptosis. Therapeutic forms of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) are investigated in clinical trials due to the capability of TRAIL to trigger apoptosis specifically in cancer cells by activation of cell surface death receptors. Many tumors, however, have acquired resistance to TRAIL-induced apoptosis and sensitizing drugs for combinatorial treatments are, therefore, in high demand. This study demonstrates that lignans, natural polyphenols enriched in seeds and cereal, have a remarkable sensitizing effect on TRAIL-induced cell death at non-toxic lignan concentrations. In TRAIL-resistant and androgen-dependent prostate cancer cells we observe that lignans repress receptor tyrosine kinase (RTK) activity and downregulate cell survival signaling via the Akt pathway, which leads to increased TRAIL sensitivity. A structure-activity relationship analysis reveals that the γ-butyrolactone ring of the dibenzylbutyrolactone lignans is essential for the rapidly reversible TRAIL-sensitizing activity of these compounds. Furthermore, the lignan nortrachelogenin (NTG) is identified as the most efficient of the 27 tested lignans and norlignans in sensitization of androgen-deprived prostate cancer cells to TRAIL-induced apoptosis. While this combinatorial anticancer approach may leave normal cells unharmed, several efficient cancer drugs are too toxic, insoluble or unstable to be used in systemic therapy. To enable use of such drugs and to protect normal cells from cytotoxic effects, cancer-targeted drug delivery vehicles of nanometer scale have recently been generated. The newly developed nanoparticle system that we tested in vitro for cancer cell targeting combines the efficient drug-loading capacity of mesoporous silica to the versatile particle surface functionalization of hyperbranched poly(ethylene imine), PEI. The mesoporous hybrid silica nanoparticles (MSNs) were functionalized with folic acid to promote targeted internalization by folate receptor overexpressing cancer cells. The presented results demonstrate that the developed carrier system can be employed in vitro for cancer selective delivery of adsorbed or covalently conjugated molecules and furthermore, for selective induction of apoptotic cell death in folate receptor expressing cancer cells. The tested carrier system displays potential for simultaneous delivery of several anticancer agents specifically to cancer cells also in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statistical analyses of measurements that can be described by statistical models are of essence in astronomy and in scientific inquiry in general. The sensitivity of such analyses, modelling approaches, and the consequent predictions, is sometimes highly dependent on the exact techniques applied, and improvements therein can result in significantly better understanding of the observed system of interest. Particularly, optimising the sensitivity of statistical techniques in detecting the faint signatures of low-mass planets orbiting the nearby stars is, together with improvements in instrumentation, essential in estimating the properties of the population of such planets, and in the race to detect Earth-analogs, i.e. planets that could support liquid water and, perhaps, life on their surfaces. We review the developments in Bayesian statistical techniques applicable to detections planets orbiting nearby stars and astronomical data analysis problems in general. We also discuss these techniques and demonstrate their usefulness by using various examples and detailed descriptions of the respective mathematics involved. We demonstrate the practical aspects of Bayesian statistical techniques by describing several algorithms and numerical techniques, as well as theoretical constructions, in the estimation of model parameters and in hypothesis testing. We also apply these algorithms to Doppler measurements of nearby stars to show how they can be used in practice to obtain as much information from the noisy data as possible. Bayesian statistical techniques are powerful tools in analysing and interpreting noisy data and should be preferred in practice whenever computational limitations are not too restrictive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resistance to anticancer drugs is a major cause of failure of many therapeutic protocols. A variety of mechanisms have been proposed to explain this phenomenon. The exact mechanism depends upon the drug of interest as well as the tumor type treated. While studying a cell line selected for its resistance to cisplatin we noted that the cells expressed a >25,000-fold collateral resistance to methotrexate. Given the magnitude of this resistance we elected to investigate this intriguing collateral resistance. From a series of investigations we have identified an alteration in a membrane protein of the resistant cell as compared to the sensitive cells that could be the primary mechanism of resistance. Our studies reviewed here indicate decreased tyrosine phosphorylation of a protein (molecular mass = 66) in the resistant cells, which results in little or no transfer of methotrexate from the medium into the cell. Since this is a relatively novel function for tyrosine phosphorylation, this information may provide insight into possible pharmacological approaches to modify therapeutic regimens by analyzing the status of this protein in tumor samples for a better survival of the cancer patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resistance to chemotherapy in cancer cells is mainly mediated by overexpression of P-glycoprotein (Pgp), a plasma membrane ATP-binding cassette (ABC) transporter which extrudes cytotoxic drugs at the expense of ATP hydrolysis. Pgp consists of two homologous halves each containing a transmembrane domain and a cytosolic nucleotide-binding domain (NBD) which contains two consensus Walker motifs, A and B, involved in ATP binding and hydrolysis. The protein also contains an S signature characteristic of ABC transporters. The molecular mechanism of Pgp-mediated drug transport is not known. Since the transporter has an extraordinarily broad substrate specificity, its cellular function has been described as a "hydrophobic vacuum cleaner". The limited knowledge about the mechanism of Pgp, partly due to the lack of a high-resolution structure, is well reflected in the failure to efficiently inhibit its activity in cancer cells and thus to reverse multidrug resistance (MDR). In contrast to the difficulties encountered when studying the full-length Pgp, the recombinant NBDs can be obtained in large amounts as soluble proteins. The biochemical and biophysical characterization of recombinant NBDs is shown here to provide a suitable alternative route to establish structure-function relationships. NBDs were shown to bind ATP and analogues as well as potent modulators of MDR, such as hydrophobic steroids, at a region close to the ATP site. Interestingly, flavonoids also bind to NBDs with high affinity. Their binding site partly overlaps both the ATP-binding site and the steroid-interacting region. Therefore flavonoids constitute a new promising class of bifunctional modulators of Pgp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Potato apyrase, a soluble ATP-diphosphohydrolase, was purified to homogeneity from several clonal varieties of Solanum tuberosum. Depending on the source of the enzyme, differences in kinetic and physicochemical properties have been described, which cannot be explained by the amino acid residues present in the active site. In order to understand the different kinetic behavior of the Pimpernel (ATPase/ADPase = 10) and Desirée (ATPase/ADPase = 1) isoenzymes, the nucleotide-binding site of these apyrases was explored using the intrinsic fluorescence of tryptophan. The intrinsic fluorescence of the two apyrases was slightly different. The maximum emission wavelengths of the Desirée and Pimpernel enzymes were 336 and 340 nm, respectively, suggesting small differences in the microenvironment of Trp residues. The Pimpernel enzyme emitted more fluorescence than the Desirée apyrase at the same concentration although both enzymes have the same number of Trp residues. The binding of the nonhydrolyzable substrate analogs decreased the fluorescence emission of both apyrases, indicating the presence of conformational changes in the neighborhood of Trp residues. Experiments with quenchers of different polarities, such as acrylamide, Cs+ and I- indicated the existence of differences in the nucleotide-binding site, as further shown by quenching experiments in the presence of nonhydrolyzable substrate analogs. Differences in the nucleotide-binding site may explain, at least in part, the kinetic differences of the Pimpernel and Desirée isoapyrases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adrenocortical carcinoma is a highly malignant neoplasm with an incidence of two per million people per year. Several treatment strategies have resulted in temporary or partial tumor regression but very few cases have attained long survival. Surgical resection of the primary tumor and metastases is most effective. Several chemotherapeutic protocols have been employed with variable success. Mitotane (o,p'-DDD) is an adrenalytic drug effective in inducing a tumor response in 33% of patients treated. Mitotane requires metabolic transformation for therapeutic action. Tumors may vary in their ability to metabolize mitotane and the ability of tumors to transform mitotane may predict the clinical response to the drug. Preliminary data show a possible correlation between metabolic activity of neoplastic adrenocortical tissue and response to mitotane. We have attempted to develop mitotane analogs with enhanced adrenalytic effect. Compared to mitotane, a di-chloro compound, the bromo-chloro and di-bromo analogs appear to have a greater effect. Future approaches to the treatment of adrenocortical carcinoma are likely to be based on blocking or reversing the biological mechanisms of tumorigenesis. Angiogenic and chemotactic mechanisms may play a role in adrenal tumor growth and inhibition of these mechanisms may result in inhibition of tumor growth. New mitotane analogs with greater adrenalytic potential could be a promising approach to developing more effective and selective therapies for adrenal cancer. Alternative approaches should attempt to suppress tumor growth by means of compounds with anti-angiogenic and anti-chemotactic activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hormone 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), the active form of vitamin D3, is an important regulator of calcium homeostasis, exerts antiproliferative effects on various cell systems and can induce differentiation in some kinds of hematopoietic cells. These effects are triggered by its receptor, vitamin D receptor (VDR), a phosphoprotein member of the nuclear receptor superfamily, which functions as a transcriptional factor. VDR binds as a heterodimer with retinoid X receptor (R X R) to hexameric repeats, characterized as vitamin D-responsive elements present in the regulatory region of target genes such as osteocalcin, osteopontin, calbindin-D28K, calbindin-D9K, p21WAF1/CIP1, TGF-ß2 and vitamin D 24-hydroxylase. Many factors such as glucocorticoids, estrogens, retinoids, proliferation rate and cell transformation can modulate VDR levels. VDR is expressed in mammary tissue and breast cancer cells, which are potential targets to hormone action. Besides having antiproliferative properties, vitamin D might also reduce the invasiveness of cancer cells and act as an anti-angiogenesis agent. All of these antitumoral features suggest that the properties of vitamin D could be explored for chemopreventive and therapeutic purposes in cancer. However, hypercalcemia is an undesirable side effect associated with pharmacological doses of 1,25-(OH)2D3. Some promising 1,25-(OH)2D3 analogs have been developed, which are less hypercalcemic in spite of being potent antiproliferative agents. They represent a new field of investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present study was to investigate the multicellular resistance of human hepatocarcinoma cells BEL-7402 to pharmorubicin. Cells (1 x 10(4)) and 200 microcarrier Cytodex-3 beads were seeded onto a 24-well plate and cultured in RPMI 1640 medium. After the formation of multicellular aggregates, morphology and cell viability were analyzed by scanning electron microscopy, transmission electron microscopy and flow cytometry, respectively. The IC50 was determined by flow cytometry and MTT assay after the cells cultured in aggregates and monolayers were treated with pharmorubicin. The culture products exhibited structural characteristics somewhat similar to those of trabecular hepatocarcinoma in vivo. Among the microcarriers, cells were organized into several layers. Intercellular spaces were 0.5-2.0 µm wide and filled with many microvilli. The percent of viable cells was 87%. The cells cultured as multicellular aggregates were resistant to pharmorubicin with IC50 4.5-fold and 7.7-fold that of monolayer culture as determined by flow cytometry and MTT assay, respectively. This three-dimensional culture model may be used to investigate the mechanisms of multicellular drug resistance of hepatocarcinoma and to screen new anticancer drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topoisomerase inhibitors are agents with anticancer activity. 7"-O-Methyl-agathisflavone (I) and amentoflavone (II) are biflavonoids and were isolated from the Brazilian plants Ouratea hexasperma and O. semiserrata, respectively. These biflavonoids and the acetyl derivative of II (IIa) are inhibitors of human DNA topoisomerases I at 200 µM, as demonstrated by the relaxation assay of supercoiled DNA, and only agathisflavone (I) at 200 µM also inhibited DNA topoisomerases II-alpha, as observed by decatenation and relaxation assays. The biflavonoids showed concentration-dependent growth inhibitory activities on Ehrlich carcinoma cells in 45-h culture, assayed by a tetrazolium method, with IC50 = 24 ± 1.4 µM for I, 26 ± 1.1 µM for II and 10 ± 0.7 µM for IIa. These biflavonoids were assayed against human K562 leukemia cells in 45-h culture, but only I showed 42% growth inhibitory activity at 90 µM. Our results suggest that biflavonoids are targets for DNA topoisomerases and their cytotoxicity is dependent on tumor cell type.