977 resultados para Applied Load
Resumo:
Työn tavoitteena oli mallintaa maastotyökoneen ajomoottorin hybridisointiin soveltuvan napavaihteiston dynamiikka. Työ tehtiin osana Saimaan ammattikorkeakoulun tutkimusprojektia, jonka tarkoituksena oli ajomoottorin ja integroidun napavaihteiston kaupallistaminen maastotyökoneisiin. Maastotyökoneena simulointimallissa käytettiin tyypillistä maataloustraktoria, johon kytkettiin vielä peräkärry. Traktorin renkaiden napaan oli kytketty ajomoottorina toimiva sähkömoottori, jonka sisään simuloitu napavaihteisto oli integroitu. Napavaihteiston dynamiikan mallintamiseen käytettiin monikappaledynamiikan simulointiohjelmistoa (Adams). Ohjelmalle määritettiin napavaihteiston komponenttien parametrit, joista voitiin simuloida vaihteiston dynaaminen käyttäytyminen. Simuloidusta mallista saatiin kytkimiin kohdistuvat voimat kytkentätilanteessa sekä sähkömoottorin väännön suunnanvaihtotilanteessa eri akselin pituuksilla, eri kytkinten nopeuseroilla, eri traktorin painoilla ja eri kuormilla ajettaessa. Mallissa simuloitiin myös sähkömoottorin käyttäytyminen vaihteenvaihtotilanteessa eri pyörimisnopeuden säätimen kertoimilla. Työssä huomattiin, että akselin mitoituksella voitiin vaikuttaa vaihteistossa ilmeneviin voimiin kytkimen kytkentähetkellä. Myös kytkimen hammastuksessa olevalla hammasvälyksellä voitiin vaikuttaa kytkimiin kohdistuviin voimiin suunnanvaihtotilanteissa. Vaihteistoon kohdistuvista voimista voidaan jatkossa suunnitella kytkimen ja akselin profiili, jotta vaihteisto kestää siihen kohdistuvat voimat.
Resumo:
Ammattikorkeakoulut ovat suurten rakenteellisten ja rahoituksellisten muutosten edessä. Rahoitus tulee jatkossa tutkintojen määrään painottuen nykyisen opiskelija-määrän sijaan ja tämä pakottaa ammattikorkeakoulut etsimään keinoja toiminnan tehostamiseksi, joista korkeakoulujen muodostamat liittoumat ovat yksi väline. Tämän tutkimuksen aiheena on tiedon jakaminen kolmen ammattikorkeakoulun muo-dostamassa strategisessa liittoumassa. Tutkimus toteutettiin kvantitatiivisena tutkimuksena, jonka empiirinen osuus toteutet-tiin kyselylomakkeella Hämeen, Lahden ja Laurea-ammattikorkeakoulujen toimijoilta keräten. Vastauksia saatiin 79, vastausprosentin ollessa 62,2 %. Tutkimustulosten perusteella FUASin johdon toimilla, organisaation rakenteella, organisaation kulttuu-rilla ja työilmapiirillä on positiivinen vaikutus tiedon jakamiseen. Lisäksi toimijoiden välinen luottamus ja avoimuus sekä motivaatio parantavat tiedon jakamista FUAS-ammattikorkeakoulujen välillä. Tiedon jakamisesta palkitseminen ja oman edun ta-voittelu eivät vaikuttaneet tilastollisesti merkittävästi FUASissa tapahtuvaan tiedon jakamiseen.
Resumo:
In this article a two-dimensional transient boundary element formulation based on the mass matrix approach is discussed. The implicit formulation of the method to deal with elastoplastic analysis is considered, as well as the way to deal with viscous damping effects. The time integration processes are based on the Newmark rhoand Houbolt methods, while the domain integrals for mass, elastoplastic and damping effects are carried out by the well known cell approximation technique. The boundary element algebraic relations are also coupled with finite element frame relations to solve stiffened domains. Some examples to illustrate the accuracy and efficiency of the proposed formulation are also presented.
Resumo:
A three dimensional nonlinear viscoelastic constitutive model for the solid propellant is developed. In their earlier work, the authors have developed an isotropic constitutive model and verified it for one dimensional case. In the present work, the validity of the model is extended to three-dimensional cases. Large deformation, dewetting and cyclic loading effects are treated as the main sources of nonlinear behavior of the solid propellant. Viscoelastic dewetting criteria is used and the softening of the solid propellant due to dewetting is treated by the modulus decrease. The nonlinearities during cyclic loading are accounted for by the functions of the octahedral shear strain measure. The constitutive equation is implemented into a finite element code for the analysis of propellant grains. A commercial finite element package ABAQUS is used for the analysis and the model is introduced into the code through a user subroutine. The model is evaluated with different loading conditions and the predicted values are in good agreement with the measured ones. The resulting model applied to analyze a solid propellant grain for the thermal cycling load.
Resumo:
A direct procedure for the evaluation of imperfection sensitivity in bifurcation problems is presented. The problems arise in the context of the general theory of elastic stability for discrete structural systems, in which the energy criterion of stability of structures and the total potential energy formulation are employed. In cases of bifurcation buckling the sensitivity of the critical load with respect to an imperfection parameter e is singular at the state given by epsilon =0, so that, a regular perturbation expansion of the solution is not possible. In this work we describe a direct procedure to obtain the relations between the critical loads, the generalized coordinates at the critical state, the eigenvector, and the amplitude of the imperfection, using singular perturbation analysis. The expansions are assumed in terms of arbitrary powers of the imperfection parameter, so that both exponents and coefficients of the expansion are unknown. The solution of the series exponents is obtained by searching the least degenerate solution. The formulation is here applied to asymmetric bifurcations, for which explicit expressions of the coefficients are obtained. The use of the method is illustrated by a simple example, which allows consideration of the main features of the formulation.
Resumo:
This paper presents the development of a two-dimensional interactive software environment for structural analysis and optimization based on object-oriented programming using the C++ language. The main feature of the software is the effective integration of several computational tools into graphical user interfaces implemented in the Windows-98 and Windows-NT operating systems. The interfaces simplify data specification in the simulation and optimization of two-dimensional linear elastic problems. NURBS have been used in the software modules to represent geometric and graphical data. Extensions to the analysis of three-dimensional problems have been implemented and are also discussed in this paper.
Resumo:
An axisymmetric supersonic flow of rarefied gas past a finite cylinder was calculated applying the direct simulation Monte Carlo method. The drag force, the coefficients of pressure, of skin friction, and of heat transfer, the fields of density, of temperature, and of velocity were calculated as function of the Reynolds number for a fixed Mach number. The variation of the Reynolds number is related to the variation of the Knudsen number, which characterizes the gas rarefaction. The present results show that all quantities in the transition regime (Knudsen number is about the unity) are significantly different from those in the hydrodynamic regime, when the Knudsen number is small.
Resumo:
This paper presents an HP-Adaptive Procedure with Hierarchical formulation for the Boundary Element Method in 2-D Elasticity problems. Firstly, H, P and HP formulations are defined. Then, the hierarchical concept, which allows a substantial reduction in the dimension of equation system, is introduced. The error estimator used is based on the residual computation over each node inside an element. Finally, the HP strategy is defined and applied to two examples.
Resumo:
It is presented a test bed applied to studies on dynamics, control, and navigation of mobile robots. A cargo ship scale model was chosen, which can be radio-controlled or operated autonomously through an embedded control system. A control program, which manages on board mission execution, is implemented on a microcontroller. Navigation is based on an electronic compass, which includes automatic compensation for pitch and roll motions. Heading control loop is based on this sensor, and on a rudder positioning system. A propulsion control system is also implemented. Typical manoeuvres as the turning test and "zig-zag", were implemented and tested. They are included on a manoeuvre library, and can be accessed independently or in combined modes. The embedded system is also in charge of signal acquisition and storing during the missions. It is possible to analyse experiments on identification of ship dynamics, control, and navigation, through the data transferred to a PC by serial communication. Navigation is going to be improved by including inertial sensors on board, and a DGPS. Preliminary tests are aimed to ship identification, and manoeuvrability, using free model tests. Future steps include extending this system for developing other mobile robots as, ROVs, AUVs, and aerial vehicles.
Resumo:
This work analyzes an active fuzzy logic control system in a Rijke type pulse combustor. During the system development, a study of the existing types of control for pulse combustion was carried out and a simulation model was implemented to be used with the package Matlab and Simulink. Blocks which were not available in the simulator library were developed. A fuzzy controller was developed and its membership functions and inference rules were established. The obtained simulation showed that fuzzy logic is viable in the control of combustion instabilities. The obtained results indicated that the control system responded to pulses in an efficient and desirable way. It was verified that the system needed approximately 0.2 s to increase the tube internal pressure from 30 to 90 mbar, with an assumed total delay of 2 ms. The effects of delay variation were studied. Convergence was always obtained and general performance was not affected by the delay. The controller sends a pressure signal in phase with the Rijke tube internal pressure signal, through the speakers, when an increase the oscillations pressure amplitude is desired. On the other hand, when a decrease of the tube internal pressure amplitude is desired, the controller sends a signal 180º out of phase.
Resumo:
This paper gives a detailed presentation of the Substitution-Newton-Raphson method, suitable for large sparse non-linear systems. It combines the Successive Substitution method and the Newton-Raphson method in such way as to take the best advantages of both, keeping the convergence features of the Newton-Raphson with the low requirements of memory and time of the Successive Substitution schemes. The large system is solved employing few effective variables, using the greatest possible part of the model equations in substitution fashion to fix the remaining variables, but maintaining the convergence characteristics of the Newton-Raphson. The methodology is exemplified through a simple algebraic system, and applied to a simple thermodynamic, mechanical and heat transfer modeling of a single-stage vapor compression refrigeration system. Three distinct approaches for reproducing the thermodynamic properties of the refrigerant R-134a are compared: the linear interpolation from tabulated data, the use of polynomial fitted curves and the use of functions derived from the Helmholtz free energy.
Resumo:
One of the problems that slows the development of off-line programming is the low static and dynamic positioning accuracy of robots. Robot calibration improves the positioning accuracy and can also be used as a diagnostic tool in robot production and maintenance. A large number of robot measurement systems are now available commercially. Yet, there is a dearth of systems that are portable, accurate and low cost. In this work a measurement system that can fill this gap in local calibration is presented. The measurement system consists of a single CCD camera mounted on the robot tool flange with a wide angle lens, and uses space resection models to measure the end-effector pose relative to a world coordinate system, considering radial distortions. Scale factors and image center are obtained with innovative techniques, making use of a multiview approach. The target plate consists of a grid of white dots impressed on a black photographic paper, and mounted on the sides of a 90-degree angle plate. Results show that the achieved average accuracy varies from 0.2mm to 0.4mm, at distances from the target from 600mm to 1000mm respectively, with different camera orientations.
Resumo:
Control of an industrial robot is mainly a problem of dynamics. It includes non-linearities, uncertainties and external perturbations that should be considered in the design of control laws. In this work, two control strategies based on variable structure controllers (VSC) and a PD control algorithm are compared in relation to the tracking errors considering friction. The controller's performances are evaluated by adding an static friction model. Simulations and experimental results show it is possible to diminish tracking errors by using a model based friction compensation scheme. A SCARA robot is used to illustrate the conclusions of this paper.
Resumo:
Carryove reffects of fomesafen on successional maize were studied in clay soil. Fomesafen was applied as postemergence at Five rate s (0; 0.12 5: 0.25 ; 0.37 5, and 0.5 kg/ha-1) to edible beans. Maize was planted 198 and 65 days after fomesafen application in 1992 and 212 and 65 days after fomesafen application in 1993. Fomesafen residues were detected in soils up to 20cm depth but residue concentration was higher in 0-10 cm soil depth. Fomesafen residues reduced leaf chlrophyll content and root volume of 10 days old maize when planted 65 days after application but were not affected when planted 212 days after application. However, the decreases in leaf chlorophyll and root volume did not affect the maize yield.
Resumo:
This thesis presents a one-dimensional, semi-empirical dynamic model for the simulation and analysis of a calcium looping process for post-combustion CO2 capture. Reduction of greenhouse emissions from fossil fuel power production requires rapid actions including the development of efficient carbon capture and sequestration technologies. The development of new carbon capture technologies can be expedited by using modelling tools. Techno-economical evaluation of new capture processes can be done quickly and cost-effectively with computational models before building expensive pilot plants. Post-combustion calcium looping is a developing carbon capture process which utilizes fluidized bed technology with lime as a sorbent. The main objective of this work was to analyse the technological feasibility of the calcium looping process at different scales with a computational model. A one-dimensional dynamic model was applied to the calcium looping process, simulating the behaviour of the interconnected circulating fluidized bed reactors. The model incorporates fundamental mass and energy balance solvers to semi-empirical models describing solid behaviour in a circulating fluidized bed and chemical reactions occurring in the calcium loop. In addition, fluidized bed combustion, heat transfer and core-wall layer effects were modelled. The calcium looping model framework was successfully applied to a 30 kWth laboratory scale and a pilot scale unit 1.7 MWth and used to design a conceptual 250 MWth industrial scale unit. Valuable information was gathered from the behaviour of a small scale laboratory device. In addition, the interconnected behaviour of pilot plant reactors and the effect of solid fluidization on the thermal and carbon dioxide balances of the system were analysed. The scale-up study provided practical information on the thermal design of an industrial sized unit, selection of particle size and operability in different load scenarios.