984 resultados para Animal tissue


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposites are recently known to be among the most successful materials in biomedical applications. In this work we sought to fabricate fibrous scaffolds which can mimic the extra cellular matrix of cartilaginous connective tissue not only to a structural extent but with a mechanical and biological analogy. Poly(3-hydroxybutyrate) (P3HB) matrices were reinforced with 5, 10 and 15 %wt hydroxyapatite (HA) nanoparticles and electrospun into nanocomposite fibrous scaffolds. Mechanical properties of each case were compared with that of a P3HB scaffold produced in the same processing condition. Spectroscopic and morphological observations were used for detecting the interaction quality between the constituents. Nanoparticles rested deep within the fibers of 1 μm in diameter. Chemical interactions of hydrogen bonds linked the constituents through the interface. Maximum elastic modulus and mechanical strength was obtained with the presence of 5%wt hydroxyapatite nanoparticles. Above 10%wt, nanoparticles tended to agglomerate and caused the entity to lose its mechanical performance; however, viscoelasticity interfered at this concentration and lead to a delayed failure. In other words, higher elongation at break and a massive work of rupture was observed at 10%wt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Ureaplasma species are the most prevalent isolates from women who deliver preterm. The MBA, a surface exposed lipoprotein, is a key virulence factor of ureaplasmas. We investigated MBA variation after chronic and acute intra-amniotic (IA) ureaplasma infections. Method: U. parvum serovar 3 (2x104 colony-forming-units) was injected IA into pregnant ewes at: 55 days gestation (d, term = 145d) (n=8); 117d (n=8) and 121d (n=8). Fetuses were delivered surgically (124d) and ureaplasmas cultured from amniotic fluid (AF), chorioamnion, fetal lung (FL) and umbilical cord were tested by western blot and PCR assays to demonstrate MBA and mba gene variation respectively. Tissue sections were sectioned and stained by haemotoxylin and eosin and inflammatory cell counts and pathology were reported (blinded to outcome). Results: Numerous MBA/mba variants were generated in vivo after chronic exposure to ureaplasma infection but after acute infection no variants (3d) or very few variants (7d) were generated. Identical MBA variants were detected within the AF and FL but different ureaplasma variants were detected within chorioamnion specimens. The severity of inflammation within chronically infected tissues varied between animals ranging from no inflammation to severe inflammation with/without fibrosis. Chorioamnion, FL and cord from the same animal demonstrated the same degree of inflammation. Conclusions: MBA/mba variation in vivo occurred after the initiation of the host immune response and we propose that ureaplasmas vary the MBA antigen to evade the host immune response. In some animals there was no inflammation despite colonisation with high numbers of ureaplasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are multi-potent cells that can differentiate into various cell types and have been used widely in tissue engineering application. In tissue engineering, a scaffold, MSCs and growth factors are used as essential components and their interactions have been regarded to be important for regeneration of tissues. A critical problem for MSCs in tissue engineering is their low survival ability and functionality. Most MSCs are going to be apoptotic after transplantation. Therefore, increasing MSC survival ability and functionalities is the key for potential applications of MSCs. Several approaches have been studied to increase MSC tissue forming capacity including application of growth factors, overexpression of stem cell regulatory genes and improvement of biomaterials for scaffolds. The effects of these approaches on MSCs have been associated with the activation of the PI3K/Akt signaling pathway. The pathway plays central regulatory roles in MSC survival, proliferation, migration, angiogenesis, cytokine production and differentiation. In this review, we summarize and discuss the literatures related to the roles of the PI3K/Akt pathway in the functionalities of MSCs and the involvement of the pathway in biomaterials-increased MSC functinalities. Biomaterials have been modified in their properties, surface structure and loaded with growth factors to increase MSC functionalities. Several studies demonstrated that the biomaterials-increased MSC functionalities are mediated by the activation of the PI3K/Akt pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently there are little objective parameters that can quantify the success of one form of prostate surgical removal over another. Accordingly, at Old Dominion University (ODU) we have been developing a process resulting in the use of software algorithms to assess the coverage and depth of extra-capsular soft tissue removed with the prostate by the various surgical approaches. Parameters such as the percent of capsule that is bare of soft tissue and where present the depth and extent of coverage have been assessed. First, visualization methods and tools are developed for images of prostate slices that are provided to ODU by the Pathology Department at Eastern Virginia Medical School (EVMS). The visualization tools interpolate and present 3D models of the prostates. Measurement algorithms are then applied to determine statistics about extra-capsular tissue coverage. This paper addresses the modeling, visualization, and analysis of prostate gland tissue to aid in quantifying prostate surgery success. Particular attention is directed towards the accuracy of these measurements and is addressed in the analysis discussions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Ureaplasma species in amniotic fluid at the time of second-trimester amniocentesis increases the risk of preterm birth, but most affected pregnancies continue to term (Gerber et al. J Infect Dis 2003). We aimed to model intra-amniotic (IA) ureaplasma infection in spiny mice, a species with a relatively long gestation (39 days) that allows investigation of the disposition and possible clearance of ureaplasmas in the feto-placental compartment. Method: Pregnant spiny mice received IA injections of U. parvum serovar 6 (10µL, 1x104 colony-forming-units in PBS) or 10B media (10µL; control) at 20 days (d) of gestation (term=39d). At 37d fetuses (n=3 ureaplasma, n=4 control) were surgically delivered and tissues were collected for; bacterial culture, ureaplasma mba and urease gene expression by PCR, tissue WBC counts and indirect fluorescent antibody (IFA) staining using anti-ureaplasma serovar 6 (rabbit) antiserum. Maternal and fetal plasma IgG was measured by Western blot. Results: Ureaplasmas were not detected by culture or PCR in fetal or maternal tissues but were visualized by IFA within placental and fetal lung tissues, in association with inflammatory changes and elevated WBC counts (p<0.0001). Anti-ureaplasma IgG was detected in maternal (2/2 tested) and fetal (1/2 tested) plasma but not in controls (0/3). Conclusions: IA injection of ureaplasmas in mid-gestation spiny mice caused persistent fetal lung and placental infection even though ureaplasmas were undetectable using standard culture or PCR techniques. This is consistent with resolution of IA infection, which may occur in human pregnancies that continue to term despite detection of ureaplasmas in mid-gestation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal progenitor cells (MPCs) represent an attractive cell population for bone tissue engineering. Their special immunological characteristics suggest that MPCs may be used in an allogenic application. The objective of this study was to compare the regenerative potential of autologous vs. allogenic MPCs in an ovine critical-sized segmental defect model. Ovine MPCs were isolated from bone marrow aspirates, expanded and cultured with osteogenic media for two weeks before implantation. Autologous and allogenic transplantation was performed by using the cell-seeded scaffolds, unloaded scaffolds and the application of autologous bone grafts served as control groups (n=6). Bone healing was assessed twelve weeks after surgery by radiology, micro computed tomography, biomechanical testing and histology. Radiology, biomechanical testing and histology revealed no significant difference in bone formation between the autologous and allogenic group. Both cell groups showed more bone formation than the scaffold alone, whereas the biomechanical data showed no significant differences between the cell-groups and the unloaded scaffolds. The results of the study suggest that scaffold based bone tissue engineering using allogenic cells offers the potential for an off the shelf product. Therefore, the results of this study serve as an important baseline for the translation of the assessed concepts into clinical application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective digital human model (DHM) simulation of automotive driver packaging ergonomics, safety and comfort depends on accurate modelling of occupant posture, which is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper presents a finite-element study simulating the deflection of seat cushion foam and supportive seat structures, as well as human buttock and thigh soft tissue when seated. The three-dimensional data used for modelling thigh and buttock geometry were taken on one 95th percentile male subject, representing the bivariate percentiles of the combined hip breadth (seated) and buttock-to-knee length distributions of a selected Australian and US population. A thigh-buttock surface shell based on this data was generated for the analytic model. A 6mm neoprene layer was offset from the shell to account for the compression of body tissue expected through sitting in a seat. The thigh-buttock model is therefore made of two layers, covering thin to moderate thigh and buttock proportions, but not more fleshy sizes. To replicate the effects of skin and fat, the neoprene rubber layer was modelled as a hyperelastic material with viscoelastic behaviour in a Neo-Hookean material model. Finite element (FE) analysis was performed in ANSYS V13 WB (Canonsburg, USA). It is hypothesized that the presented FE simulation delivers a valid result, compared to a standard SAE physical test and the real phenomenon of human-seat indentation. The analytical model is based on the CAD assembly of a Ford Territory seat. The optimized seat frame, suspension and foam pad CAD data were transformed and meshed into FE models and indented by the two layer, soft surface human FE model. Converging results with the least computational effort were achieved for a bonded connection between cushion and seat base as well as cushion and suspension, no separation between neoprene and indenter shell and a frictional connection between cushion pad and neoprene. The result is compared to a previous simulation of an indentation with a hard shell human finite-element model of equal geometry, and to the physical indentation result, which is approached with very high fidelity. We conclude that (a) SAE composite buttock form indentation of a suspended seat cushion can be validly simulated in a FE model of merely similar geometry, but using a two-layer hard/soft structure. (b) Human-seat indentation of a suspended seat cushion can be validly simulated with a simplified human buttock-thigh model for a selected anthropomorphism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The texture of agricultural crops changes during harvesting, post harvesting and processing stages due to different loading processes. There are different source of loading that deform agricultural crop tissues and these include impact, compression, and tension. Scanning Electron Microscope (SEM) method is a common way of analysing cellular changes of materials before and after these loading operations. This paper examines the structural changes of pumpkin peel and flesh tissues under mechanical loading. Compression and indentation tests were performed on peel and flesh samples. Samples structure were then fixed and dehydrated in order to capture the cellular changes under SEM. The results were compared with the images of normal peel and flesh tissues. The findings suggest that normal flesh tissue had bigger size cells, while the cellular arrangement of peel was smaller. Structural damage was clearly observed in tissue structure after compression and indentation. However, the damages that resulted from the flat end indenter was much more severe than that from the spherical end indenter and compression test. An integrated deformed tissue layer was observed in compressed tissue, while the indentation tests shaped a deformed area under the indenter and left the rest of the tissue unharmed. There was an obvious broken layer of cells on the walls of the hole after the flat end indentations, whereas the spherical indenter created a squashed layer all around the hole. Furthermore, the influence of loading was lower on peel samples in comparison with the flesh samples. The experiments have shown that the rate of damage on tissue under constant rate of loading is highly dependent on the shape of equipment. This fact and observed structural changes after loading underline the significance of deigning post harvesting equipments to reduce the rate of damage on agricultural crop tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determinants and key mechanisms of cancer cell osteotropism have not been identified, mainly due to the lack of reproducible animal models representing the biological, genetic and clinical features seen in humans. An ideal model should be capable of recapitulating as many steps of the metastatic cascade as possible, thus facilitating the development of prognostic markers and novel therapeutic strategies. Most animal models of bone metastasis still have to be derived experimentally as most syngeneic and transgeneic approaches do not provide a robust skeletal phenotype and do not recapitulate the biological processes seen in humans. The xenotransplantation of human cancer cells or tumour tissue into immunocompromised murine hosts provides the possibility to simulate early and late stages of the human disease. Human bone or tissue-engineered human bone constructs can be implanted into the animal to recapitulate more subtle, species-specific aspects of the mutual interaction between human cancer cells and the human bone microenvironment. Moreover, the replication of the entire "organ" bone makes it possible to analyse the interaction between cancer cells and the haematopoietic niche and to confer at least a partial human immunity to the murine host. This process of humanisation is facilitated by novel immunocompromised mouse strains that allow a high engraftment rate of human cells or tissue. These humanised xenograft models provide an important research tool to study human biological processes of bone metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background A large animal model is required for assessment of minimally invasive, tissue engineering based approaches to thoracic spine fusion, with relevance to deformity correction surgery for human adolescent idiopathic scoliosis. Here we develop a novel open mini–thoracotomy approach in an ovine model of thoracic interbody fusion which allows assessment of various fusion constructs, with a focus on novel, tissue engineering based interventions. Methods The open mini-thoracotomy surgical approach was developed through a series of mock surgeries, and then applied in a live sheep study. Customized scaffolds were manufactured to conform with intervertebral disc space clearances required of the study. Twelve male Merino sheep aged 4 to 6 years and weighing 35 – 45 kg underwent the abovementioned procedure and were divided into two groups of six sheep at survival timelines of 6 and 12 months. Each sheep underwent a 3-level discectomy (T6/7, T8/9 and T10/11) with randomly allocated implantation of a different graft substitute at each of the three levels; (i) polycaprolactone (PCL) based scaffold plus 0.54μg rhBMP-2, (ii) PCL-based scaffold alone or (iii) autograft. The sheep were closely monitored post- operatively for signs of pain (i.e. gait abnormalities/ teeth gnawing/ social isolation). Fusion assessments were conducted post-sacrifice using Computed Tomography and hard-tissue histology. All scientific work was undertaken in accordance with the study protocol has been approved by the Institute's committee on animal research. Results. All twelve sheep were successfully operated on and reached the allotted survival timelines, thereby demonstrating the feasibility of the surgical procedure and post-operative care. There were no significant complications and during the post-operative period the animals did not exhibit marked signs of distress according to the described assessment criteria. Computed Tomographic scanning demonstrated higher fusion grades in the rhBMP-2 plus PCL-based scaffold group in comparison to either PCL-based scaffold alone or autograft. These results were supported by histological evaluation of the respective groups. Conclusion. This novel open mini-thoracotomy surgical approach to the ovine thoracic spine represents a safe surgical method which can reproducibly form the platform for research into various spine tissue engineered constructs (TEC) and their fusion promoting properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skin is the largest, and arguably, the most important organ of the body. It is a complex and multi-dimensional tissue, thus making it essentially impossible to fully model in vitro in conventional 2-dimensional culture systems. In view of this, rodents or pigs are utilised to study wound healing therapeutics or to investigate the biological effects of treatments on skin. However, there are many differences between the wound healing processes in rodents compared to humans (contraction vs. re-epithelialisation) and there are also ethical issues associated with animal testing for scientific research. Therefore, the development of skin equivalent (HSE) models from surgical discard human skin has become an important area of research. The studies in this thesis compare, for the first time, native human skin and the epidermogenesis process in a HSE model. The HSE was reported to be a comparable model for human skin in terms of expression and localisation of key epidermal cell markers. This validated HSE model was utilised to study the potential wound healing therapeutic, hyperbaric oxygen (HBO) therapy. There is a significant body of evidence suggesting that lack of cutaneous oxygen results in and potentiates the chronic, non-healing wound environment. Although the evidence is anecdotal, HBO therapy has displayed positive effects on re-oxygenation of chronic wounds and the clinical outcomes suggest that HBO treatment may be beneficial. Therefore, the HSE was subjected to a daily clinical HBO regime and assessed in terms of keratinocyte migration, proliferation, differentiation and epidermal thickening. HBO treatment was observed to increase epidermal thickness, in particular stratum corneum thickening, but it did not alter the expression or localisation of standard epidermal cell markers. In order to elucidate the mechanistic changes occurring in response to HBO treatment in the HSE model, gene microarrays were performed, followed by qRT-PCR of select genes which were differentially regulated in response to HBO treatment. The biological diversity of the HSEs created from individual skin donors, however, overrode the differences in gene expression between treatment groups. Network analysis of functional changes in the HSE model revealed general trends consistent with normal skin growth and maturation. As a more robust and longer term study of these molecular changes, protein localisation and expression was investigated in sections from the HSEs undergoing epidermogenesis in response to HBO treatment. These proteins were CDCP1, Metallothionein, Kallikrein (KLK) 1 and KLK7 and early growth response 1. While the protein expression within the HSE models exposed to HBO treatment were not consistent in all HSEs derived from all skin donors, this is the first study to detect and compare both KLK1 and CDCP1 protein expression in both a HSE model and native human skin. Furthermore, this is the first study to provide such an in depth analysis of the effect of HBO treatment on a HSE model. The data presented in this thesis, demonstrates high levels of variation between individuals and their response to HBO treatment, consistent with the clinical variation that is currently observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, three mathematical models describing the growth of solid tumour incorporating the host tissue and the immune system response are developed and investigated. The initial model describes the dynamics of the growing tumour and immune response before being extended in the second model by introducing a time-varying dendritic cell-based treatment strategy. Finally, in the third model, we present a mathematical model of a growing tumour using a hybrid cellular automata. These models can provide information to pre-experimental work to assist in designing more effective and efficient laboratory experiments related to tumour growth and interactions with the immune system and immunotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sheep (Ovis aries) is commonly used as a large animal model in skeletal research. Although the sheep genome has been sequenced there are still only a limited number of annotated mRNA sequences in public databases. A complementary DNA (cDNA) library was constructed to provide a generic resource for further exploration of genes that are actively expressed in bone cells in sheep. It was anticipated that the cDNA library would provide molecular tools for further research into the process of fracture repair and bone homeostasis, and add to the existing body of knowledge. One of the hallmarks of cDNA libraries has been the identification of novel genes and in this library the full open reading frame of the gene C12orf29 was cloned and characterised. This gene codes for a protein of unknown function with a molecular weight of 37 kDa. A literature search showed that no previous studies had been conducted into the biological role of C12orf29, except for some bioinformatics studies that suggested a possible link with cancer. Phylogenetic analyses revealed that C12orf29 had an ancient pedigree with a homologous gene found in some bacterial taxa. This implied that the gene was present in the last common eukaryotic ancestor, thought to have existed more than 2 billion years ago. This notion was further supported by the fact that the gene is found in taxa belonging to the two major eukaryotic branches, bikonts and unikonts. In the bikont supergroup a C12orf29-like gene was found in the single celled protist Naegleria gruberi, whereas in the unikont supergroup, encompassing the metazoa, the gene is universal to all chordate and, therefore, vertebrate species. It appears to have been lost to the majority of cnidaria and protostomes taxa; however, C12orf29-like genes have been found in the cnidarian freshwater hydra and the protostome Pacific oyster. The experimental data indicate that C12orf29 has a structural role in skeletal development and tissue homeostasis, whereas in silico analysis of the human C12orf29 promoter region suggests that its expression is potentially under the control of the NOTCH, WNT and TGF- developmental pathways, as well SOX9 and BAPX1; pathways that are all heavily involved in skeletogenesis. Taken together, this investigation provides strong evidence that C12orf29 has a very important role in the chordate body plan, in early skeletal development, cartilage homeostasis, and also a possible link with spina bifida in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia is responsible for a wide range of diseases with enormous global economic and health burden. As the majority of chlamydial infections are asymptomatic, a vaccine has greatest potential to reduce infection and disease prevalence. Protective immunity against Chlamydia requires the induction of a mucosal immune response, ideally, at the multiple sites in the body where an infection can be established. Mucosal immunity is most effectively stimulated by targeting vaccination to the epithelium, which is best accomplished by direct vaccine application to mucosal surfaces rather than by injection. The efficacy of needle-free vaccines however is reliant on a powerful adjuvant to overcome mucosal tolerance. As very few adjuvants have proven able to elicit mucosal immunity without harmful side effects, there is a need to develop non-toxic adjuvants or safer ways to administered pre-existing toxic adjuvants. In the present study we investigated the novel non-toxic mucosal adjuvant CTA1-DD. The immunogenicity of CTA1-DD was compared to our "gold-standard" mucosal adjuvant combination of cholera toxin (CT) and cytosine-phosphate-guanosine oligodeoxynucleotide (CpG-ODN). We also utilised different needle-free immunisation routes, intranasal (IN), sublingual (SL) and transcutaneous (TC), to stimulate the induction of immunity at multiple mucosal surfaces in the body where Chlamydia are known to infect. Moreover, administering each adjuvant by different routes may also limit the toxicity of the CT/CpG adjuvant, currently restricted from use in humans. Mice were immunised with either adjuvant together with the chlamydial major outer membrane protein (MOMP) to evaluate vaccine safety and quantify the induction of antigen-specific mucosal immune responses. The level of protection against infection and disease was also assessed in vaccinated animals following a live genital or respiratory tract infectious challenge. The non-toxic CTA1-DD was found to be safe and immunogenic when delivered via the IN route in mice, inducing a comparable mucosal response and level of protective immunity against chlamydial challenge to its toxic CT/CpG counterpart administered by the same route. The utilisation of different routes of immunisation strongly influenced the distribution of antigen-specific responses to distant mucosal surfaces and also abrogated the toxicity of CT/CpG. The CT/CpG-adjuvanted vaccine was safe when administered by the SL and TC routes and conferred partial immunity against infection and pathology in both challenge models. This protection was attributed to the induction of antigen-specific pro-inflammatory cellular responses in the lymph nodes regional to the site of infection and rather than in the spleen. Development of non-toxic adjuvants and effective ways to reduce the side effects of toxic adjuvants has profound implications for vaccine development, particularly against mucosal pathogens like Chlamydia. Interestingly, we also identified two contrasting vaccines in both infection models capable of preventing infection or pathology exclusively. This indicated that the development of pathology following an infection of vaccinated animals was independent of bacterial load and was instead the result of immunopathology, potentially driven by the adaptive immune response generated following immunisation. While both vaccines expressed high levels of interleukin (IL)-17 cytokines, the pathology protected group displayed significantly reduced expression of corresponding IL-17 receptors and hence an inhibition of signalling. This indicated that the balance of IL-17-mediated responses defines the degree of protection against infection and tissue damage generated following vaccination. This study has enabled us to better understand the immune basis of pathology and protection, necessary to design more effective vaccines.