992 resultados para Anatomy, Human
Resumo:
Surface-enhanced Raman spectroscopy (SERS) is a potentially important tool in the rapid and accurate detection of pathogenic bacteria in biological fluids. However, for diagnostic application of this technique, it is necessary to develop a highly sensitive, stable, biocompatible and reproducible SERS-active substrate. In this work, we have developed a silver–gold bimetallic SERS surface by a simple potentiostatic electrodeposition of a thin gold layer on an electrochemically roughened nanoscopic silver substrate. The resultant substrate was very stable under atmospheric conditions and exhibited the strong Raman enhancement with the high reproducibility of the recorded SERS spectra of bacteria (E. coli, S. enterica, S. epidermidis, and B. megaterium). The coating of the antibiotic over the SERS substrate selectively captured bacteria from blood samples and also increased the Raman signal in contrast to the bare surface. Finally, we have utilized the antibiotic-coated hybrid surface to selectively identify different pathogenic bacteria, namely E. coli, S. enterica and S. epidermidis from blood samples.
Resumo:
Purpose: To determine the relative contributions of rods, cones and melanopsin to pupil responses in humans using temporal sinusoidal stimulation for light levels spanning the low mesopic to photopic range. Methods: A four-primary Ganzfeld photostimulator controlled flicker stimulations at seven light levels (-2.7 to 2 log cd/m2) and five frequencies (0.5 to 8Hz). Pupil diameter was measured using a high-resolution eyetracker. Three kinds of sinusoidal photoreceptor modulations were generated using silent substitution: 1) rod modulation, 2) cone modulation, and 3) combined rod and cone modulation in phase (Experiment 1) or phase shifted (Experiment 2) from a fixed rod phase. The melanopsin excitation was computed for each condition. A vector sum model was used to estimate the relative contribution of rods, cones and melanopsin to the pupil response. Results: From Experiment 1, the pupil frequency response peaked at 1Hz at two mesopic light levels for the three modulation conditions. Analyzing the rod-cone phase difference for the combined modulations (Experiment 2) identified a V-shaped response amplitude with a minimum between 135° and 180°. The pupil response phases increased as cone modulation phase increased. The pupil amplitude increased with increasing light level for cone and combined in-phase rod and cone modulation, but not for the rod modulation. Conclusions: These results demonstrate that cone- and rod-pathway contributions are more predominant than melanopsin contribution to the phasic pupil response. The combined rod, cone and melanopsin inputs to the phasic state of the pupil light reflex follow linear summation.
Resumo:
GABAB receptors regulate the intracellular Ca2+ concentration ([Ca2+]i) in a number of cells (e.g., retina, airway epithelium and smooth muscle), but whether they are expressed in vascular endothelial cells and similarly regulate the [Ca2+]i is not known. The purpose of this study was to investigate the expression of GABAB receptors, a subclass of receptors to the inhibitory neurotransmitter γ-aminobutyric acid (GABA), in cultured human aortic endothelial cells (HAECs), and to explore if altering receptor activation modified [Ca2+]i and endothelial nitric oxide synthase (eNOS) translocation. Real-time PCR, western blots and immunofluorescence were used to determine the expression of GABAB1 and GABAB2 in cultured HAECs. The effects of GABAB receptors on [Ca2+]i in cultured HAECs were demonstrated using fluo-3. The influence of GABAB receptors on eNOS translocation was assessed by immunocytochemistry. Both GABAB1 and GABAB2 mRNA and protein were expressed in cultured HAECs, and the GABAB1 and GABAB2 proteins were colocated in the cell membrane and cytoplasm. One hundred μM baclofen caused a transient increase of [Ca2+]i and eNOS translocation in cultured HAECs, and the effects were attenuated by pretreatment with the selective GABAB receptor antagonists CGP46381 and CGP55845. GABAB receptors are expressed in HAECs and regulate the [Ca2+]i and eNOS translocation. Cultures of HAECs may be a useful in vitro model for the study of GABAB receptors and vascular biology.
Resumo:
The aim of this study was to investigate the expression of GABAB receptors, a subclass of receptors to the inhibitory neurotransmitter gamma-aminobutyric acid (GABAB), in human aortic smooth muscle cells (HASMCs), and to explore if altering receptor activation modified intracellular Ca(2+) concentration ([Ca(2+)]i) of HASMCs. Real-time PCR, western blots and immunofluorescence were used to determine the expression of GABABR1 and GABABR2 in cultured HASMCs. Immunohistochemistry was used to localize the two subunits in human left anterior descending artery (LAD). The effects of the GABAB receptor agonist baclofen on [Ca(2+)]i in cultured HASMCs were demonstrated using fluo-3. Both GABABR1 and GABABR2 mRNA and protein were identified in cultured HASMCs and antibody staining was also localized to smooth muscle cells of human LAD. 100 μM baclofen caused a transient increase of [Ca(2+)]i in cultured HASMCs regardless of whether Ca(2+) was added to the medium, and the effects were inhibited by pre-treatment with CGP46381 (selective GABAB receptor antagonist), pertussis toxin (a Gi/o protein inhibitor), and U73122 (a phospholipase C blocker). GABAB receptors are expressed in HASMCs and regulate the [Ca(2+)]i via a Gi/o-coupled receptor pathway and a phospholipase C activation pathway
Resumo:
GABAB receptors associate with Gi/o-proteins that regulate voltage-gated Ca(2+) channels and thus the intracellular Ca(2+) concentration ([Ca(2+)]i), there is also reported cross-regulation of phospholipase C. These associations have been studied extensively in the brain and also shown to occur in non-neural cells (e.g. human airway smooth muscle). More recently GABAB receptors have been observed in chick retinal pigment epithelium (RPE). The aims were to investigate whether the GABAB receptor subunits, GABAB1 and GABAB2, are co-expressed in cultured human RPE cells, and then determine if the GABAB receptor similarly regulates the [Ca(2+)]i of RPE cells and if phospholipase C is involved. Human RPE cells were cultured from 5 donor eye cups. Evidence for GABAB1 and GABAB2 mRNAs and proteins in the RPE cell cultures were investigated using real time PCR, western blots and immunofluorescence. The effects of the GABAB receptor agonist baclofen, antagonist CGP46381, a Gi/o-protein inhibitor pertussis toxin, and the phospholipase C inhibitor U73122 on [Ca(2+)]i in cultured human RPE were demonstrated using Fluo-3. Both GABAB1 and GABAB2 mRNA and protein were identified in cell cultures of human RPE; antibody staining was co-localized to the cell membrane and cytoplasm. One-hundred μM baclofen caused a transient increase in the [Ca(2+)]i of RPE cells regardless of whether Ca(2+) was added to the buffer. Baclofen induced increases in the [Ca(2+)]i were attenuated by pre-treatment with CGP46381, pertussis toxin, and U73122. GABAB1 and GABAB2 are co-expressed in cell cultures of human RPE. GABAB receptors in RPE regulate the [Ca(2+)]i via a Gi/o-protein and phospholipase C pathway.
Resumo:
Purpose: The therapeutic ratio for ionising radiation treatment of tumour is a trade-off between normal tissue side-effects and tumour control. Application of a radioprotector to normal tissue can reduce side-effects. Here we study the effects of a new radioprotector on the cellular response to radiation. Methylproamine is a DNA-binding radioprotector which, on the basis of published pulse radiolysis studies, acts by repair of transient radiation-induced oxidative species on DNA. To substantiate this hypothesis, we studied protection by methylproamine at both clonogenic survival and radiation-induced DNA damage, assessed by γH2AX (histone 2AX phosphorylation at serine 139) focus formation endpoints. Materials and methods: The human keratinocyte cell line FEP1811 was used to study clonogenic survival and yield of γH2AX foci following irradiation (137Cs γ-rays) of cells exposed to various concentrations of methylproamine. Uptake of methylproamine into cell nuclei was measured in parallel. Results: The extent of radioprotection at the clonogenic survival endpoint increased with methylproamine concentration up to a maximum dose modification factor (DMF) of 2.0 at 10 μM. At least 0.1 fmole/nucleus of methylproamine is required to achieve a substantial level of radioprotection (DMF of 1.3) with maximum protection (DMF of 2.0) achieved at 0.23 fmole/nucleus. The γH2AX focus yield per cell nucleus 45 min after irradiation decreased with drug concentration with a DMF of 2.5 at 10 μM. Conclusions: These results are consistent with the hypothesis that radioprotection by methylproamine is mediated by attenuation of the extent of initial DNA damage.
Resumo:
Rodent (mouse and rat) models have been crucial in developing our understanding of human neurogenesis and neural stem cell (NSC) biology. The study of neurogenesis in rodents has allowed us to begin to understand adult human neurogenesis and in particular, protocols established for isolation and in vitro propagation of rodent NSCs have successfully been applied to the expansion of human NSCs. Furthermore, rodent models have played a central role in studying NSC function in vivo and in the development of NSC transplantation strategies for cell therapy applications. Rodents and humans share many similarities in the process of neurogenesis and NSC biology however distinct species differences are important considerations for the development of more efficient human NSC therapeutic applications. Here we review the important contributions rodent studies have had to our understanding of human neurogenesis and to the development of in vitro and in vivo NSC research. Species differences will be discussed to identify key areas in need of further development for human NSC therapy applications.
Resumo:
This book is an overview of key debates, research findings and theories in the area of sex and sexuality. Controversial issues are discussed in an informative and fair, balanced manner. With its sociological orientation, Perspectives in Human Sexuality employs a range of empirical and theoretical resources, including those which utilise scientific, medical, historical and ethical knowledge in order to elucidate the critical issues affecting contemporary life. This is the first textbook written especially for undergraduate students to offer a detailed and comprehensive introduction to sex and sexuality from an Australian and New Zealand perspective. This work examines issues such as sex and age, sex work and gay, lesbian and queer sex. Leading Australian and New Zealand authors in the field of sex and sexuality have contributed to the book. The book deals with sexuality from an Australasian perspective, addressing the specific concerns and interests of an Australasian audience, providing it with a unique standing in the current market.
Resumo:
Objective. To assess medical and nursing students’ knowledge, attitudes, and practices (KAP) regarding human immunodeficiency virus (HIV) in Fiji. Methods. A cross-sectional study of 275 medical and 252 nursing students that participated in a questionnaire survey on HIV KAP. Data was analysed according to their gender, program of study, and academic year. Results. The mean HIV knowledge (HK) and attitude scores were 16.0 and 41.3, respectively. Mean HK score was significantly higher in males compared to females. Significant positive correlations were found between HK and academic year for medical () and nursing () students and between HK and attitude scores (). The majority of students indicated fear in contracting HIV through clinical practice and felt that health care workers have the right to know a patients HIV status for their own safety. The majority would wear gloves to touch a patient if suspected of HIV. Conclusions. The study found a high level of HIV knowledge and positive attitude towards HIV patients. However, respondents also displayed negative attitudes and unacceptable practices probably due to fear. Training institutions need to ensure that students gain accurate knowledge on HIV especially on transmission routes to allay the fear of caring for HIV-infected patients.
Resumo:
There is strong current interest in the use of biodegradable scaffolds in combination with bone growth factors as a valuable alternative to the current gold standard autograft in spinal fusion surgery Yong et al. (2013). Here we report on 6- vs 12- month data set evaluating the longitudinal performance of a CaP coated polycaprolactone (PCL) scaffold loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within a preclinical ovine thoracic spine. The results of this study demonstrate the efficacy of scaffold-based delivery of rhBMP-2 in promoting higher fusion grades at 6- and 12- months in comparison to the scaffold alone or autograft group within the same time frame. Fusion grades achieved at six months using PCL+rhBMP-2 are not significantly increased at twelve months post surgery.
Resumo:
Gender-focused human resource policies and practices signal an organization’s perspective on gender diversity. The signal produces perceptions that the organization values gender diversity leading to a gender-diverse workforce. In turn, a gender-diverse workforce provides a firm with a competitive advantage which should result in higher performance. This paper tests the mediating effects of gender diversity (at non-management and management levels) in the relationship between gender-focused policies and practices and performance. The findings indicate that non-management gender diversity partially mediates the relationship between gender-focused policies and practices and productivity, and management gender diversity partially mediates the relationship between gender-focused policies and practices and perceived market performance. The results have several theoretical, research and practical implications.
Resumo:
Kiwi (Apteryx spp.) have a visual system unlike that of other nocturnal birds, and have specializations to their auditory, olfactory and tactile systems. Eye size, binocular visual fields and visual brain centers in kiwi are proportionally the smallest yet recorded among birds. Given the many unique features of the kiwi visual system, we examined the laminar organization of the kiwi retina to determine if they evolved increased light sensitivity with a shift to a nocturnal niche or if they retained features of their diurnal ancestor. The laminar organization of the kiwi retina was consistent with an ability to detect low light levels similar to that of other nocturnal species. In particular, the retina appeared to have a high proportion of rod photoreceptors compared to diurnal species, as evidenced by a thick outer nuclear layer, and also numerous thin photoreceptor segments intercalated among the conical shaped cone photoreceptor inner segments. Therefore, the retinal structure of kiwi was consistent with increased light sensitivity, although other features of the visual system, such as eye size, suggest a reduced reliance on vision. The unique combination of a nocturnal retina and smaller than expected eye size, binocular visual fields and brain regions make the kiwi visual system unlike that of any bird examined to date. Whether these features of their visual system are an evolutionary design that meets their specific visual needs or are a remnant of a kiwi ancestor that relied more heavily on vision is yet to be determined.
Resumo:
Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These ‘bill-tip organs’ allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill-tip organs and associated somatosensory brain regions are likely a result of similar ecological selective pressures, with inter-specific variations reflecting finer-scale niche differentiation.
Resumo:
Automated remote ultrasound detectors allow large amounts of data on bat presence and activity to be collected. Processing of such data involves identifying bat species from their echolocation calls. Automated species identification has the potential to provide more consistent, predictable, and potentially higher levels of accuracy than identification by humans. In contrast, identification by humans permits flexibility and intelligence in identification, as well as the incorporation of features and patterns that may be difficult to quantify. We compared humans with artificial neural networks (ANNs) in their ability to classify short recordings of bat echolocation calls of variable signal to noise ratios; these sequences are typical of those obtained from remote automated recording systems that are often used in large-scale ecological studies. We presented 45 recordings (1–4 calls) produced by known species of bats to ANNs and to 26 human participants with 1 month to 23 years of experience in acoustic identification of bats. Humans correctly classified 86% of recordings to genus and 56% to species; ANNs correctly identified 92% and 62%, respectively. There was no significant difference between the performance of ANNs and that of humans, but ANNs performed better than about 75% of humans. There was little relationship between the experience of the human participants and their classification rate. However, humans with <1 year of experience performed worse than others. Currently, identification of bat echolocation calls by humans is suitable for ecological research, after careful consideration of biases. However, improvements to ANNs and the data that they are trained on may in future increase their performance to beyond those demonstrated by humans.