906 resultados para Alginate gel microparticles, ibuprofen, gentamicin sulphate, drug release, activity, S. epidermidis, C. albicans


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dendrimeric nanoparticles are potential drug delivery devices which can enhance the solubility of hydrophobic drugs, thus increasing their bioavailability and sustained release action. A quantitative understanding of the dendrimer-drug interactions can give valuable insight into the solubility and release profile of hydrophobic drug molecules in various solvent conditions. Fully atomistic molecular dynamics (MD) simulations have been performed to study the interactions of G5 PPIEDA (G5 ethylenediamine cored poly(propylene imine)) dendrimer and two well known drugs (Famotidine and Indomethacin) at different pH conditions. The study suggested that at low pH the dendrimer-drug complexes are thermodynamically unstable as compared to neutral and high pH conditions. Calculated Potential of Mean Force (PMF) by umbrella sampling showed that the release of drugs from the dendrimer at low pH is spontaneous, median release at neutral pH and slow release at high pH. In addition, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) binding free energy calculations were also performed at each umbrella sampling window to identify the various energy contributions. To understand the effect of dendrimer chemistry and topology on the solubility and release profile of drugs, this study is extended to explore the solubility and release profile of phenylbutazone drug complexed with G3 poly(amidoamine) and G4 diaminobutane cored PPI dendrimers. The results indicate that the pH-induced conformational changes in dendrimer, ionization states, dendrimer type and pK(a) of the guest molecules influence the free energy barrier and stability of complexation, and thus regulate drug loading, solubility and release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present investigation an attempt has been made to develop a new co-polymeric material for controlled release tablet formulations. The acrylamide grafting was successfully performed on the backbone of sago starch. The modified starch was tested for acute toxicity and drug-excipient compatibility study. The grafted material was used in making of controlled release tablets of lamivudine. The formulations were evaluated for physical characteristics such as hardness, friability, %drug content and weight variations. The in vitro release study showed that the optimized formulation exhibited highest correlation (R) value in case of Higuchi model and the release mechanism of the optimized formulation predominantly exhibited combination of diffusion and erosion process. There was a significant difference in the pharmacokinetic parameters (T-max, C-max, AUC, V-d, T-1/2 and MDT) of the optimized formulation as compared to the marketed conventional tablet Lamivir (R) was observed. The pharmacokinetics parameters were showed controlled pattern and better bioavailability. The optimized formulation exhibited good stability and release profile at the accelerated stability conditions. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a simple method to fabricate multifunctional polyelectrolyte thin films to load and deliver the therapeutic drugs. The multilayer thin films were assembled by the electrostatic adsorption of poly (allylamine hydrochloride) (PAH) and dextran sulfate (DS). The silver nanoparticles (Ag NPs) biosynthesized from novel Hybanthus enneaspermus leaf extract as the reducing agent were successfully incorporated into the film. The biosynthesized Ag NPs showed excellent antimicrobial activity against the range of enteropathogens, which could be significantly enhanced when used with commercial antibiotics. The assembled silver nano composite multilayer films showed rupture and deformation when they are exposed to laser. The Ag NPs act as an energy absorption center, locally heat up the film and rupture it under laser treatment. The antibacterial drug, moxifloxacin hydrochloride (MH) was successfully loaded into the multilayer films. The total amount of MH release observed was about 63% which increased to 85% when subjected to laser light exposure. Thus, the polyelectrolyte thin film reported in our study has significant potential in the field of remote activated drug delivery, antibacterial coatings and wound dressings. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present herein a short tripeptide sequence (Lys-Phe-Gly or KFG) that is situated in the juxtamembrane region of the tyrosine kinase nerve growth factor (Trk NGF) receptors. KFG self-assembles in water and shows a reversible and concentration-dependent switching of nanostructures from nanospheres (vesicles) to nanotubes, as evidenced by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. The morphology change was associated with a transition in the secondary structure. The tripeptide vesicles have inner aqueous compartments and are stable at pH7.4 but rupture rapidly at pH approximate to 6. The pH-sensitive response of the vesicles was exploited for the delivery of a chemotherapeutic anticancer drug, doxorubicin, which resulted in enhanced cytotoxicity for both drug-sensitive and drug-resistant cells. Efficient intracellular release of the drug was confirmed by fluorescence-activated cell sorting analysis, fluorescence microscopy, and confocal microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, we have made an effort to develop the novel synthetic antioxidants and antimicrobials with improved potency. The novel benzofuran-gathered C-2,4,6-substituted pyrimidine derivatives 5a, 5b, 5c, 5d, 5e, 5f, 6a, 6b, 6c, 6d, 6e, 6f, 7a, 7b, 7c, 7d, 7e, 7f, 8a, 8b, 8c, 8d, 8e, 8f, 9a, 9b, 9c, 9d, 9e, 9f were synthesized by simple and efficient four-step reaction pathway. Initially, o-alkyl derivative of salicylaldehyde readily furnish corresponding 2-acetyl benzofuran 2 in good yield, upon the treatment with potassium tertiary butoxide in the presence of molecular sieves. Further, Claisen-Schmidt condensation with aromatic aldehydes via treatment with thiourea followed by coupling reaction with different sulfonyl chlorides afforded target compounds. The structures of newly synthesized compounds were confirmed by IR, H-1 NMR, C-13 NMR, mass, and elemental analysis and further screened for their antioxidant and antimicrobial activities. The results showed that the synthesized compounds 8b, 8e, 9b, and 9e produced significant antioxidant activity with 50% inhibitory concentration higher than that of reference, whereas compounds 7d and 7c produced dominant antimicrobial activity at concentrations 1.0 and 0.5mg/mL compared with standard Gentamicin and Nystatin, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two antineoplastic agents, Imatinib (IM) and 5-Fluorouracil (FU) were conjugated by hydrolysable linkers through an amide bond and entrapped in polymeric Human Serum Albumin (HSA) nanoparticles. The presence of dual drugs in a common carrier has the advantage of reaching the site of action simultaneously and acting at different phases of the cell cycle to arrest the growth of cancer cells before they develop chemoresistance. The study has demonstrated an enhanced anticancer activity of the conjugate, and conjugate loaded stealth HSA nanoparticles (NPs) in comparison to the free drug in A-549 human lung carcinoma cell line and Zebra fish embryos (Danio rerio). Hydrolysability of the conjugate has also been demonstrated with complete hydrolysis being observed after 12 h. In vivo pharmacodynamics study in terms of tumor volume and pharmacokinetics in mice for conjugate (IM-SC-FU) and conjugate loaded nanoparticles showed significant anti-cancer activity. The other parameters evaluated were particle size (86nm), Poly Dispersive Index (PDI) (0.209), zeta potential (-49mV), drug entrapment efficiency (96.73%) and drug loading efficiency (89%). Being in stealth mode gives the potential for the NPs to evade Reticulo-Endothelial system (RES), achieve passive targeting by Enhanced Permeation Retention (EPR) effect with controlled release of the therapeutic agent. As the conjugate cleaves into individual drugs in the tumor environment, this promises better suppression of cancer chemoresistance by delivering dual drugs with different modes of action at the same site, thereby synergistically inhibiting the growth of cancerous tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fungal infection was observed in Catla catla and Labeo rohita cultured in two private fish farms. The later stage of the infection resulted in ulcerations followed by haemorrhage on the dorsal surface of the body. Initially, usual treatments of copper sulphate, potassium permanganate and common salt solution were tried, but no improvement was observed. Then repeated intramuscular injections of homeopathic drug Heaper Sulpher and Arnica spray were given with encouraging results. Infection reported in another farm was also successfully controlled using a similar treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Filtrable phosphorus compounds in a shallow Chinese freshwater lake (Donghu Lake) were fractionated by Sephadex G-25 gel-filtration chromatography. Some portions of those compounds released soluble reactive phosphorus upon irradiation with low dose ultraviolet light. Catalase and a hydroxyl radical scavenger (mannitol) markedly prevented photosensitive phosphorus release. The observed effects may be explained by the action of oxidizing reagents such as hydroxyl radicals, produced in photochemical reactions between UV irradiation and humic substances in the water. There was a strong seasonality in UV-sensitive P (UVSP) release. Michaels constants (K-m) of total alkaline phosphatase in the lake water showed a direct positive relation to UVSP. Plot of K-m against the UVSP/phosphomonoester ratio reveals a strong relationship between the two variables. These results suggest that in some situations UVSP may be a competitive inhibitor of alkaline phosphatase activity in the lake. The competitive inhibition of fractionated UVSP on alkaline phosphatase reagent (Sigma) apparently supports this hypothesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of full interpenetrating polymer network (full-IPN) films of poly(acrylic acid) (PAA)/poly (vinyl alcohol) (PVA) were prepared by radical solution polymerization and sequential IPN technology. Attenuated total reflectance-Fourier transform infrared spectroscopy, swelling properties, mechanical properties, morphology, and glass transition temperature of the films were investigated. FTIR spectra analysis showed that new interaction hydrogen bonds between PVA and PAA were formed. Swelling property of the films in distilled water and different pH buffer solution was studied. Swelling ratio increased with increasing PAA content of IPN films in all media, and swelling ratio decreased with increasing PVA crosslink degree. Tensile strength and elongation at break related not only to the constitution of IPNs but also to the swelling ratio of IPNs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA was efficiently bound to water-soluble positively charged CdTe quantum dots (QDs) through complementary electrostatic interaction. These QDs-DNA complexes were disrupted and DNA was released by glutathione (GSH) at intracellular concentrations. Interestingly, there was almost no detectable DNA released by extracellular concentration of GSH. The formation of QDs-DNA complexes and GSH-mediated DNA release from the complexes were confirmed by dye displacement assay, electrophoretic mobility shift assay (EMSA), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The release behavior of a water-soluble small molecule drug from the drug-loaded nanofibers prepared by emulsion-electrospinning was investigated. Doxorubicin hydrochloride (Dox), a water-soluble anticancer agent, was used as the model drug. The laser scanning confocal microscopic images indicated that the drug was well incorporated into amphiphilic poly(ethylene glycol)-poly(L-lactic acid) (PEG-PLA) diblock copolymer nanofibers, forming "core-sheath" structured drug-loaded nanofibers.