904 resultados para Absorption of light
Resumo:
The scintillation and luminescence properties of pure CsBa2I5 and CsBa2I5 doped with 0.5% Eu and 5% Eu were studied between 78 K and 600 K. Single crystals were grown by the vertical Bridgman method from the melt. CsBa2I5:5% Eu showed a light yield of 80,000 photons/MeV, an energy resolution of 2.3% for the 662 key full absorption peak, and an excellent proportional response. Two broad emission bands centered at 400 nm and 600 nm were observed in the radioluminescence spectrum of pure CsBa2I5. The Eu2+ 5d-4f emission band was observed at 430 nm. The radiative lifetime of the Eu2+ excited state was determined as 350 ns. With increasing temperature and Eu concentration the Eu2+ emission shifts to longer wavelengths and its decay time lengthens as a result of self-absorption of the Eu2+ emission. Multiple thermoluminescence glow peaks and a sharp decrease of the light yield at temperatures below 200 K were observed and related to the presence of the charge carrier traps in CsBa2I5:Eu.
Resumo:
The study assessed the brain electric mechanisms of light and deep hypnotic conditions in the framework of EEG temporal microstates. Multichannel EEG of healthy volunteers during initial resting, light hypnosis, deep hypnosis, and eventual recovery was analyzed into temporal EEG microstates of four classes. Microstates are defined by the spatial configuration of their potential distribution maps ([Symbol: see text]potential landscapes') on the head surface. Because different potential landscapes must have been generated by different active neural assemblies, it is reasonable to assume that they also incorporate different brain functions. The observed four microstate classes were very similar to the four standard microstate classes A, B, C, D [Koenig, T. et al. Neuroimage, 2002;16: 41-8] and were labeled correspondingly. We expected a progression of microstate characteristics from initial resting to light to deep hypnosis. But, all three microstate parameters (duration, occurrence/second and %time coverage) yielded values for initial resting and final recovery that were between those of the two hypnotic conditions of light and deep hypnosis. Microstates of the classes B and D showed decreased duration, occurrence/second and %time coverage in deep hypnosis compared to light hypnosis; this was contrary to microstates of classes A and C which showed increased values of all three parameters. Reviewing the available information about microstates in other conditions, the changes from resting to light hypnosis in certain respects are reminiscent of changes to meditation states, and changes to deep hypnosis of those in schizophrenic states.
Resumo:
BACKGROUND Quantitative light intensity analysis of the strut core by optical coherence tomography (OCT) may enable assessment of changes in the light reflectivity of the bioresorbable polymeric scaffold from polymer to provisional matrix and connective tissues, with full disappearance and integration of the scaffold into the vessel wall. The aim of this report was to describe the methodology and to apply it to serial human OCT images post procedure and at 6, 12, 24 and 36 months in the ABSORB cohort B trial. METHODS AND RESULTS In serial frequency-domain OCT pullbacks, corresponding struts at different time points were identified by 3-dimensional foldout view. The peak and median values of light intensity were measured in the strut core by dedicated software. A total of 303 corresponding struts were serially analyzed at 3 time points. In the sequential analysis, peak light intensity increased gradually in the first 24 months after implantation and reached a plateau (relative difference with respect to baseline [%Dif]: 61.4% at 12 months, 115.0% at 24 months, 110.7% at 36 months), while the median intensity kept increasing at 36 months (%Dif: 14.3% at 12 months, 75.0% at 24 months, 93.1% at 36 months). CONCLUSIONS Quantitative light intensity analysis by OCT was capable of detecting subtle changes in the bioresorbable strut appearance over time, and could be used to monitor the bioresorption and integration process of polylactide struts.
Resumo:
DNA can serve as a versatile scaffold for chromophore assemblies. For example, light-harvesting antennae have been realized by incorporating phenanthrene and pyrene building blocks into DNA strands. It was shown that by exciting at 320 nm (absorption of phenanthrene), an emission at 450 nm is observed which corresponds to a phenanthrene-pyrene exciplex. The more phenanthrenes are added into the DNA duplex, the higher is the fluorescence intensity with no significant change in quantum yield. This shows that phenanthrene acts as a donor and efficiently transfers the excitation energy to the pyrene. Up to now, the mechanism of this energy transfer and exciplex formation is not known. Therefore, we first aim at studying the photo-cycle of such DNA assemblies through transient absorption spectroscopy. Based on the results, we will explore ways to manipulate the energy transfer by application of intense THz fields. Ground as well as excited state Stark effect dynamics will be investigated.
Resumo:
The population of space debris increased drastically during the last years. Collisions involving massive objects may produce large number of fragments leading to significantly growth of the space debris population. An effective remediation measure in order to stabilize the population in LEO, is therefore the removal of large, massive space debris. To remove these objects, not only precise orbits, but also more detailed information about their attitude states will be required. One important property of an object targeted for removal is its spin period and spin axis orientation. If we observe a rotating object, the observer sees different surface areas of the object which leads to changes in the measured intensity. Rotating objects will produce periodic brightness vari ations with frequencies which are related to the spin periods. Photometric monitoring is the real tool for remote diagnostics of the satellite rotation around its center of mass. This information is also useful, for example, in case of contingency. Moreover, it is also important to take into account the orientation of non-spherical body (e.g. space debris) in the numerical integration of its motion when a close approach with the another spacecr aft is predicted. We introduce the two databases of light curves: the AIUB data base, which contains about a thousand light curves of LEO, MEO and high-altitude debris objects (including a few functional objects) obtained over more than seven years, and the data base of the Astronomical Observatory of Odessa University (Ukraine), which contains the results of more than 10 years of photometric monitoring of functioning satellites and large space debris objects in low Earth orbit. AIUB used its 1m ZIMLAT telescope for all light curves. For tracking low-orbit satellites, the Astronomical Observatory of Odessa used the KT-50 telescope, which has an alt-azimuth mount and allows tracking objects moving at a high angular velocity. The diameter of the KT-50 main mirror is 0.5 m, and the focal length is 3 m. The Odessa's Atlas of light curves includes almost 5,5 thousand light curves for ~500 correlated objects from a time period of 2005-2014. The processing of light curves and the determination of the rotation period in the inertial frame is challenging. Extracted frequencies and reconstructed phases for some interesting targets, e.g. GLONASS satellites, for which also SLR data were available for confirmation, will be presented. The rotation of the Envisat satellite after its sudden failure will be analyzed. The deceleration of its rotation rate within 3 years is studied together with the attempt to determine the orientation of the rotation axis.
Resumo:
Intact chloroplasts were isolated from mature pea (Pisum sativum L.) leaves in order to study the degradation of several stromal proteins in organello. Changes in the abundances of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39), phosphoribulokinase (EC 2.7.1.19), glutamine synthetase (EC 6.3.1.2) and ferredoxin-dependent glutamine:α-ketoglutarate aminotransferase (glutamate synthase; EC 1.4.7.1) were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Coomassie-staining of the gels or immunoblotting using specific antibodies for the different enzymes. Degradation of several stromal proteins was strongly stimulated when intact chloroplasts were incubated in the light in the presence of dithiothreitol. Since free radicals may artificially accumulate in the chloroplast under such conditions and interfere with the stability of stromal proteins, the general relevance of these processes remains questionable. In the absence of light, proteolysis proceeded slowly in isolated chloroplasts and was not stimulated by dithiothreitol. Inhibition by ethylenediaminetetraacetic acid (EDTA), 1,10-phenanthroline or excess zinc ions as well as the requirement for divalent cations suggested that a zinc-containing metalloprotease participated in this process. Furthermore, light-independent degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoribulokinase was enhanced in chloroplasts isolated from leaves in which senescence was accelerated by nitrogen starvation. Our results indicate that light-independent stromal protein degradation in intact chloroplasts may be analogous to proteolysis that occurs in intact leaves during senescence.
Resumo:
Metasequoia glyptostroboides is a useful nearest living relative (NLR) of the Eocene fossil Metasequoia. Research on modern Metasequoia might give us some clues about its fossil counterpart. During this study the leaf anatomy of Metasequoia, Glyptostrobus, Sequoia and Taxodium was investigated with light microscopy and transmission electron microscopy. Metasequoia exhibits several characteristics of typical sciaphilic plants, such as slightly arched outer cell walls in the adaxial epidermal cells, strongly arched outer cell walls in the abaxial epidermal cells, mesophyll composed of spongy cells, chloroplasts with well-developed grana not only in mesophyll cells but in both the adaxial and abaxial epidermis. Based on comparison of leaf morphology and anatomy, we conclude that Metasequoia is best adapted to low light intensities, Sequoia and Taxodium are intermediate, and Glyptostrobus is adapted to higher light intensities. The effects of light intensity on mesophyll plastids of Metasequoia leaves were studied with trees grown under different light intensities. Metasequoia had the ability to synthesize chlorophyll under complete darkness and was stressed under high light. These characteristics would provide adaptive advantages for Metasequoia to adapt to low intensity, low angle, polar light at their Eocene high latitude paleoenvironments, particularly during the polar spring when light levels are exceedingly low. It provides evidence to explain why Metasequoia was the dominant tree species in Eocene high latitudes. The thesis is written as an article to be submitted to the American Journal of Botany.
Resumo:
There is evidence that ultraviolet radiation (UVR) is increasing over certain locations on the Earth's surface. Of primary concern is the annual pattern of ozone depletion over Antarctica and the Southern Ocean. Reduction of ozone concentration selectively limits absorption of solar UV-B (290–320 nm), resulting in higher irradiance at the Earth's surface. The effects of ozone depletion on the human population and natural ecosystems, particularly the marine environment, are a matter of considerable concern. Indeed, marine plankton may serve as sensitive indicators of ozone depletion and UV-B fluctuations. Direct biological effects of UVR result from absorption of UV-B by DNA. Once absorbed, energy is dissipated by a variety of pathways, including covalent chemical reactions leading to the formation of photoproducts. The major types of photoproduct formed are cyclobutyl pyrimidine dimer (CPD) and pyrimidine(6-4)pyrimidone dimer [(6-4)PD]. Marine plankton repair these photoproducts using light-dependent photoenzymatic repair or nucleotide excision repair. The studies here show that fluctuations in CPD concentrations in the marine environment at Palmer Station, Antarctica correlate well with ozone concentration and UV-B irradiance at the Earth's surface. A comparison of photoproduct levels in marine plankton and DNA dosimeters show that bacterioplankton display higher resistance to solar UVR than phytoplankton in an ozone depleted environment. DNA damage in marine microorganisms was investigated during two separate latitudinal transects which covered a total range of 140°. We observed the same pattern of change in DNA damage levels in dosimeters and marine plankton as measured using two distinct quantitative techniques. Results from the transects show that differences in photosensitivity exist in marine plankton collected under varying UVR environments. Laboratory studies of Antarctic bacterial isolates confirm that marine bacterioplankton possess differences in survival, DNA damage induction, and repair following exposure to UVR. Results from DNA damage measurements during ozone season, along a latitudinal gradient, and in marine bacterial isolates suggest that changes in environmental UVR correlate with changes in UV-B induced DNA damage in marine microorganisms. Differences in the ability to tolerate UVR stress under different environmental conditions may determine the composition of the microbial communities inhabiting those environments. ^
Resumo:
Channelrhodopsins are phototaxis receptors in the plasma membranes of motile unicellular algae. They function as light-gated cation channels and this channel activity has been exploited to trigger action potentials in neurons with light to control neural circuits (“optogenetics"). Four channelrhodopsins were identified in two algal species, Chlamydomonas reinhardtii and Volvox carteri, with known genome sequences; each species contains 2 channelrhodopsins, one absorbing at longer wavelengths and one at shorter wavelengths, named CrChR1 and CrChR2, respectively. Our goals are to expand knowledge of channelrhodopsin mechanisms and also to identify new channelrhodopsins from various algal species with improved properties for optogenetic use. For these aims we are targeting algae from extreme environments to establish the natural diversity of their properties. We cloned a new channelrhodopsin from the psychrophilic (cold-loving) alga, Chlamydomonas augustae, with degenerate primers based on the 4 known homologs. The new protein is 48% and 52% identical to CrChR1 and CrChR2, respectively. We expressed the channelrhodopsin in HEK293 cells and measured light-induced currents to assess their kinetics and action spectrum. Based on the primary structure, kinetics of light-induced photocurrents in HEK293 cells, and action spectrum maximum of 520 nm near that of the two previously found CrChR1, we named the new channelrhodopsin CaChR1. The properties of robust channel activity at physiological pH, fast on-and-off kinetics, and greatly red-shifted action spectrum maximum from that of CrChR2, make CaChR1 advantageous as an optogenetic tool. To know this new channelrhodopsin better, we expressed His-tagged CaChR1 in Pichia pastoris and the yield is about 6 mg/L. The purified His-tagged CaChR1 exhibited an absorption spectrum identical to the action spectrum of CaChR1-generated photocurrents. The future work will be measurement of the photocycles of CaChR1 by flash photolysis, crystallization of CaChR1 for the structure and mutagenesis of CaChR1 to find the critical amino acids accounting for red-shifted spectra, slow inactivation and rapid on-and-off kinetics. Seven new channelrhodopsins including CaChR1 from different algal species have been cloned in our lab at this time, bringing the total known to 13. The work of cloning of these new channelrhodopsins along with the expression of CaChR1 was published in Photochemistry and Photobiology in January 2012
Resumo:
With a 6-channel integrating nephelometer spectral scattering properties of the atmospheric aerosol have been measured during the third part of the Atlantic Expedition 1969. A meridional cross section of light scattering integrals in the wavelength range 0.475 µm to 0.924 µm was recorded reaching from 10° S to 60° N along 30° W. With a new algorithm the time series of hourly scattering spectra was inverted yielding a first meridional cross section of the median radius of the number size distribution in situ. Three air mass regimes could be distinguished in the course of the experiment, the first one being the extremely clean air of the SE-trade south of the ITC. An abrupt increase in light scattering marked the hemispheric change when the ship entered the NE-trade which was heavily loaded with Sahara dust. North of the trade region the ship sailed through maritime North Atlantic air masses with highly variable light scattering and a slow decrease in median radius with latitude.
Resumo:
During summer 2008, as part of the Circumpolar Flaw Lead system study, we measured phytoplankton photosynthetic parameters to understand regional patterns in primary productivity, including the degree and timescale of photoacclimation and how variability in environmental conditions influences this response. Photosynthesis-irradiance measurements were taken at 15 sites primarily from the depth of the subsurface chlorophyll a (Chl a) maximum (SCM) within the Beaufort Sea flaw lead polynya. The physiological response of phytoplankton to a range of light levels was used to assess maximum rates of carbon (C) fixation (P*m), photosynthetic efficiency (alpha*), photoacclimation (Ek), and photoinhibition (beta*). SCM samples taken along a transect from under ice into open water exhibited a >3-fold increase in alpha* and P*m, showing these parameters can vary substantially over relatively small spatial scales, primarily in response to changes in the ambient light field. Algae were able to maintain relatively high rates of C fixation despite low light at the SCM, particularly in the large (>5 µm) size fraction at open water sites. This may substantially impact biogenic C drawdown if species composition shifts in response to future climate change. Our results suggest that phytoplankton in this region are well acclimated to existing environmental conditions, including sea ice cover, low light, and nutrient pulses. Furthermore, this photoacclimatory response can be rapid and keep pace with a developing SCM, as phytoplankton maintain photosynthetic rates and efficiencies in a narrow ''shade-acclimated'' range.
Resumo:
Ag and Au are typically concentrated in phosphorites; they genetically related to organic matter of bottom sediments that extract these elements from seawater or interstitial water. Consequently, the phosphorites inherit Ag and Au from host sediments that are not always enriched in them. In contrast to other organic-rich sediments, analyzed sample of recent diatom ooze from the Namibian shelf is not enriched in Ag and Au, although some sediments from this region are enriched in Au. In addition to authigenic Au, allochthonous Au associated with quartz grains and micrograins can also be present in shelf phosphorites. This was observed in oceanic phosphorites of various types. Anomalous Au and Fe contents recorded in one seamount phosphorite sample can be related to extraction of Au and nonferrous metals by ferromanganese hydroxides from seawater. This process can serve as one of major mechanisms of Au supply to ferromanganese crusts on seamounts. Phosphorites and sediments are enriched in Ru simultaneously with U. Author's data show that U content varies from 17 (seamount phosphorite) to 887 ppm (Pleistocene phosphorite nodule from the Namibian shelf). This is probably caused by different types of behavior of light and heavy PGEs in the marine environment.
Resumo:
During ODP Leg 107, two holes were drilled in the basement of Vavilov Basin, a central oceanic area of the Tyrrhenian sea. Hole 655B is located near the Gortani ridge in off-axis position at the western rim of the basin; Hole 651A is located on a basement swell at the axis of the basin. This paper deals with mineral chemistry, major and trace element geochemistry, and petrogenesis of the basalts recovered in the two holes. The mineralogy of the basalts is broadly homogeneous, but all of them have suffered important seawater alteration. Their major-element compositions are similar to both normal-mid-ocean-ridge-basalts (N-MORB) and back-arc-basalts (BAB) except for Na2O contents (BAB-like), and K2O which is somewhat enriched in upper unit of Hole 651 A. Their affinity with N-MORB and BAB is confirmed by using immobile trace elements such as Zr, Y, and Nb. However, basalts from the two sites present contrasting geochemical characteristics on spidergrams using incompatible elements. Hole 655B basalts are homogeneous enriched tholeiites, similar to those from DSDP Hole 373 (located on the opposite side of the basin near the eastern rim), and show affinities with enriched MORB (E-MORB). At Hole 651 A, the two basalt units are chemically distinct. One sample recovered in lower unit is rather similar to those from Hole 655B, but basalts from upper unit display calc-alkaline characteristic evidenced by the increase of light-ion-lithophile-element (LILE)/high-field-strength-element (HFSE) ratio, and appearance of a negative Nb-anomaly, making them comparable with orogenic lavas from the adjacent Eolian arc. The observed chemical compositions of the basalts are consistent with a derivation of the magmas from a N-MORB type source progressively contaminated by LILE-enriched fluids released from dehydration of the bordering subducted plate. Implications for evolution of the Tyrrhenian basin are tentatively proposed taking into consideration geochemical and chronological relationships between basalts from Leg 107 Holes 655B and 651 A, together with data from Leg 42 Site 373 and Vavilov Seamount. These data illustrate back-arc spreading in ensialic basin closely associated with the maturation of the adjacent subduction, followed by the growth of late off-axis central volcano, whereas the active subduction retreats southeastward.