983 resultados para 7140-237


Relevância:

10.00% 10.00%

Publicador:

Resumo:

青稞,是我国藏区居民对裸大麦的称谓,它不仅是藏民的主要食粮、燃料和牲畜饲料,而且也是啤酒、医药和保健品生产的原料;青稞不仅为藏区人民的健康和经济发展做出了很大的贡献,而且对人类健康和社会经济的可持续发展都有重要的意义。青藏高原是我国及世界上青稞分布和种植面积最大的地区,资源极其丰富。虽然从经典遗传直到分子标记对我国大麦遗传多样性都有研究,但研究手段、数量仍然不够深入,对我国大麦资源遗传多样性研究的信息非常有限,不能很好地满足大麦遗传研究和育种应用的需要,尤其是对西藏栽培大麦的遗传多样性的研究还只是刚刚开始,关于栽培青稞多态性的研究报道很少。本研究采用SSR标记和蛋白质电泳两类技术,从SSR标记位点、单体醇溶蛋白、B组醇溶蛋白和淀粉粒结合蛋白(SGP)等四个方面对我国青藏高原栽培青稞的遗传多样性进行了综合评价。 SSR标记具有基因组分布广泛、数量丰富、多态性高、容易检测、共显性、结果稳定可靠、实验重现性好、操作简单、经济、易于高通量分析等许多优点,被认为是用于遗传多样性、品种鉴定、物种的系统发育、亲缘关系及起源等研究的非常有效的分子标记。本研究采用SSR标记分析了64份青藏高原栽培青稞的遗传多样性,同时评估SSR标记在我国大麦育种和品种鉴定中的应用潜力。选择了30个已知作图位点SSR标记,其中25个标记与重要性状的控制位点连锁紧密。选择的30个SSR标记,5个未得到很好的扩增产物,3个无多态性。22个多态性SSR标记位点中,每位点检测出等位基因2~15个,共检测出等位基因132个,平均每位点6.0 个。各多态位点检测出基因型为2~11种,位点HVM33的基因型最多。各多态位点的多态信息指数为0.16~0.91, 平均为0.65。根据PIC值选择了13个SSR标记用于我国青藏高原栽培青稞基因型鉴定,这些标记的PIC值为0.6以上。结合PIC值和基因型差异,选择了8个多态信息含量高的SSR标记,构建了高效指纹图谱,此图谱能把64份材料完全区分。 贮藏蛋白电泳分析是研究相关编码蛋白基因多态性的非常有效的方法。大麦单体蛋白与小麦醇溶蛋白相对应,具有丰富的多态性,可用于大麦遗传多样性、品种鉴定和群体进化等研究。本研究通过A-PAGE电泳技术研究了84份青藏高原栽培青稞的单体醇溶蛋白多态性。大麦单体醇溶蛋白图谱与小麦醇溶蛋白电泳图谱类似,所分离的蛋白清晰地分为ω-,γ-,β-和α-四个部分。青藏高原栽培青稞单体醇溶蛋白具有丰富的多态性,84份青稞材料中存在43条不同的蛋白带,75种组合带谱;其中67种为单一材料所独有,另8种则分别包含了2-3份材料。每份材料中拥有醇溶蛋白带为6-16条,含有6-10条单体醇溶蛋白带材料较多。西藏和四川材料群体单体醇溶蛋白多态性不同,具有区域特异性。西藏材料中发现了40条不同蛋白带,3条特异带,46 种蛋白组合;四川材料中出现了40种不同蛋白带,26种条带组合, 3条特异带。基于单体蛋白多态性的聚类与材料的来源有一定的相关性。A-PAGE单体蛋白具有丰富的多态性,可作为遗传研究和品种鉴定的标记。 大麦醇溶蛋白(hordein)是大麦籽粒的主要贮藏蛋白,与大麦的营养品质和加工品质密切相关,而且具有丰富的多态性,广泛用于品种鉴定、种质筛选、遗传多样性和亲缘关系研究。B组醇溶蛋白是主要的醇溶蛋白组份,约占总醇溶蛋白的80%,而且具有丰富的多态性。本研究采用SDS-PAGE分析了72份青藏高原栽培青稞B组醇溶蛋白的遗传多样性。青藏高原栽培青稞B组醇溶蛋白具有丰富的多态性,72份青稞材料中存在15种蛋白带,30种组合带谱,其中15种为单一材料所独有,另15种则分别包含了2-10份材料。每份材料中B组醇溶蛋白条带数为4-8条,含5、6条的材料较常见。不同来源的群体材料间B组醇溶蛋白组成存在差异,西藏青稞含有26种蛋白组合带谱,其中有19种特异带谱;四川群体中共发现11种蛋白组合带型,其中有4种特有带谱。两群体中都存在稀有条带。聚类分析将材料分成三组,材料聚类与材料来源地没有明显的相关性。 淀粉粒蛋白(Starch granule proteins, SGPs)是一类与淀粉粒结合的微量蛋白,一些淀粉粒蛋白具有淀粉生化合成中主要的酶蛋白功能,其变异会影响淀粉含量和特性,从而影响淀粉的应用。关于我国大麦淀粉粒组成研究还未见报道。本实验首次开创了我国大麦淀粉粒结合蛋白的研究工作。采用SDS-PAGE电泳技术研究了青藏高原栽培青稞的SGP组成,并分析了不同SGP组合间淀粉含量的差异,初步探索了所分离的SGP蛋白与淀粉合成的关系。66份青稞材料中分离了10种主要的SGP,其表观分子量为40-100KD,低于60KD的SGP带有7条,共有16种组合带谱;各SGP蛋白和组合带谱出现的频率存在差异,青藏高原青稞的SGP组成存在多态性。西藏青稞和四川青稞的SGP组成有很大差异,SGP组成具有地域差异性,西藏青稞含有12种蛋白组合带谱,其中有9种特异带谱;四川群体中共发现7种蛋白组合带型,其中有4种特有带谱;两群体中仅有3种共同的蛋白组合带谱。SGP蛋白特性将66份青稞分为三组, 即Ⅰ、Ⅱ、Ⅲ,材料聚类与材料来源具有一定的相关性。不同组合带谱材料间淀粉含量差异显著性检验结果显示,不同带谱间材料的总淀粉含量、直链淀粉含量和支链淀粉含量有差异,带谱2(SGP1+3+7+9+10)和8(SGP1+2+4+6+8)的总淀粉含量及支链淀粉含量显著大于组合带谱3(SGP1+3+7+10)的总淀粉含量。组合带谱7(SGP1+2+6+8)的直链淀粉含量显著低于带谱11(SGP1+5+8)的直链淀粉。带谱SGP2、3、4、5、6、7、8、9、10可能参与淀粉合成,SGP9可能与高支链淀粉的合成相关。 SSR标记位点、单体醇溶蛋白、B组醇溶蛋白、淀粉结合蛋白等四个方面的研究结果表明青藏高原SSR标记多态性、单体醇溶蛋白多态性、B组醇溶蛋白多态性和SGP多态性都非常丰富,与青藏高原是栽培青稞的多样性分布中心的观点一致。 青藏高原栽培青稞的SSR标记、单体醇溶蛋白、B组醇溶蛋白和SGP多态性表现出很大差异。SSR标记覆盖了整个基因组,多态性非常高。单体蛋白、B组醇溶蛋白、SGP蛋白是育种中非常关注的性状,他们只是代表基因组中的某一区域或位点,多态性相对较低。但单体蛋白多态性很高,84份材料中检测出43条不同蛋白带,75种不同的组合带谱。SSR标记技术和单体蛋白技术都是遗传多样性研究的有力工具,但单体蛋白技术不仅多态性高,而且经济、操作简便,是种质鉴定的理想方法。 对不同标记的多态性材料数据进行聚类,聚类图能为我们提供各材料间的遗传相似信息,为材料选择提供参考。但材料聚类与材料来源的地理区域的相关性表现不一致。SSR聚类和B组醇溶蛋白聚类与材料的来源地无相关性,而单体醇溶蛋白和SGP聚类与材料来源地有一定相关性,即西藏群体和四川群体分别有集中类群,这可能是人为选择的附加效应。 不同来源的群体材料的遗传多样性不同,具有区域特异稀有基因,加强不同地区间资源的交换和配合使用,有利于增加群体遗传多样性和新品种培育。 青藏高原栽培青稞的麦芽浸提性状、淀粉性状、病虫及裸粒等重要农艺性状控制位点存在丰富的变异,遗传基础宽广,可能蕴藏着多种不同的等位基因,是研究重要性状遗传特性、基因资源挖掘和遗传育种的宝贵资源库。 Hulless barley, due to its favorable attributes such as high feed value, good human nutrition,rich dietary fiber and ease processing, attracts people,s attention . Hulless barley plays a very important role in Tibetan life, used as essential food crop, main animal feed and important fuel. In addition to tsampa (roasted barley flour), a main food for Tibetan, hulless barley is also made into cake, soup, porridge, recent naked barley liquor and cornmeal. Qinghai-Tibet Plateau is one of a few areas which plant naked barley widely in the world and also has a long growing history. Genetic diversity of the cultivated hulless barley in this region , however, has not been documented. The study of genetic diversity existing within this population is of particular interest in germplasm identification, preservation, and new cultivar development. This study analyzed the genetic diversity of the cultivated naked barley from Qinghai-Tibet plateau through the study of SSR marker loci and monomeric prolamins, B-horden and starch granule proteins. SSRs are present abundantly in genomes of higher organisms and have become a popular marker system in plant studies. SSRs offer a number of advantages, such as the high level of polymorphisms, locus specificity, co-dominance, reproducibility, ease of use through PCRand random distribution throughout the genome. In barley, several hundred SSRs have been developed and genetically mapped and can therefore be selected from specific genomic regions. The genetic diversity of 64 cultivated naked barley from Tibet and Sichuan was studied with 30 SSRs of known map location.Among the selected SSR markers, PCR products of 5 SSR markers were not obtained and 3 SSR marker loci were monomeric. A total of 132 alleles were identified at 22 polyomeric SSR loci. The number of alleles per locus ranged from 2 to 15, with an average of 6.0. The polymorphism information content values for the SSRs ranged from 0.08 to 0.94, with an average of 0.65. 13 SSR markers with the PIC value >0.6 have been selected for discrimination of Qinghai-Tibet naked barley genotypews. A finger Print map was developed through 7 SSR markers with the high PIC value. It could be used as an efficient tool for gene discovery and identification of gernplasm. Hordeins, the main storage proteins of the barley seed, are composed of momomeric and polymeric prolamins and divided into -A, B, C and D groups in order of decreasing electrophoretic mobility. Hordeins show high inter-genotypic variation and have been extensively used as markers for cultivar identification and analyzing the genetic diversity. This study analyzed the genetic diversity of B-hordein in 72 naked barley from Qinqhai-Tibet Plateau. Extensive diversity was observed. A total of 15 different bands and 30 distinct patterns were found. Jaccard's coefficient of similarity was calculated, and the accessions were divided into three main groups by cluster analysis using UPGMA. Differentiation among the populations from different collecting regions based on the polymorphism of B-hordein was investigated. Monomeric prolamins show high inter-genotypic variation and have been used as molecular markers for cultivar identification, analyzing the genetic diversity in collections and investigating the evolution processes and structure of populations However, the cultivated hulless accessions from Qinghai-Tibet Pateau in China have never been examined with respect to monomeric prolamins. This study analyzed the genetic diversity of monomeric prolamins (protein fraction corresponding to wheat gliadins) using the Acid -PAGE technique in eighty-four cultivated hulless barley from Qinqhai-Tibet Plateau in China. Extensive diversity was observed. A total of 43 different bands were found, of which 21 different bands were in the region of ω group, 8 in the region of γ, 8 in the region of β, and 6 in the region of α group. Among the 86 accessions, 75 distinct patterns were identified. The number of bands ranged from 6 to 16, depending on the variety. Jaccard’s coefficient of similarity was calculated, and the lines were grouped by cluster analysis using UPGMA. A dendrogram was obtained from the analysis of the groups and five main clusters were identified. No relationship between the distribution in the dendrogram and growth habits and origins of the cultivars could be detected. Starch is the major constituent of the cereal endosperm, comprising approximately 65% of the dry weight of the mature wheat grain. The starch formed in all organs of plants is packaged into starch granules, which vary widely between species and cultivars in size and shape. Wheat endosperm starch granules contain about corresponding to the main biosynthase of starch. This report firstly dealed with intraspecific variation of the major SGPs in cultivated naked barley from Qinghai-Tibet plateau. A total of 10 major SGPs were observed in the range of 40KD-100KD and 16 types of patterns were found. Based on the variation of SGPs, accessions studied were classified into 3 groups. A geographical cline of electrophoregram was observed. In addition, significance test of the difference of starch content among groups and types of patterns were done, and the results indicated those SGPs could be related to the content of starch. Diagram obtained through cluster analysis exhibited a structuration of diversity and genetic relationship among cultivated hulless accessions. In breeding program, parents with genetically distant relationship for hybridization will increase genetic diversity of progenies. In conclusion, cultivated naked barley from Qinghai-Tibet Plateau in China presents a high variability with respect to monomeric prolamins,SSR markers , B- hordeins and SGPs. The result of this study supports Qinghai-Tibet Plateau is the center of cultivated hulless barley and the cultivated naked barley is considered to be a gene pool with large diversity and could be applied to breeding for cereal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文以中国科学院成都生物研究所培育的同源四倍体水稻和二倍体水稻为材料,进行遗传差异及产量、品质性状的研究:1、以二倍体水稻为对照,研究了同源四倍体水稻在2004 年和2005 年的结实情况。结果同源四倍体的花粉育性、结实率均不同程度下降,尤其低代材料更是大幅度下降。F 检验表明,同源四倍体不同个体间的各产量性状均差异显著,说明其具有很大的遗传改良潜力。从1996 年到2005 年对部分同源四倍体水稻进行了连续选择改良,T 检验表明经过9 年的选择改良,其结实率显著提高。本文还对同源四倍体水稻各产量性状间的相关性进行了分析,结果结实率与花粉育性、穗着粒数、穗实粒数极显著相关;理论产量与花粉育性、有效穗数、穗着粒数、穗实粒数、结实率及千粒重极显著相关。i2、用(CT)n 微卫星标记和PCR-Acc Ι分子标记对40 份同源四倍体和14 份二倍体水稻Wx 基因进行研究。结果,(CT)n 微卫星标记检测,Wx 基因呈Wx1、Wx2 和Wx3 3 种多态性;PCR-Acc Ι 检测,Wx 基因表现为G-型和T-型。测定稻米直链淀粉含量(AC)、胶稠度(GC)和糊化温度(GT),并探讨其与Wx 基因的关系,结果,二倍体和同源四倍体水稻均存在:Wx 基因型相同,AC 差异较小,Wx 基因型不同时,AC 差异较大,Wx1 基因型品种AC 最高, Wx2 基因型品种AC 次之,Wx3 基因型品种AC 最低;基因型相同时,同源四倍体AC 低于二倍体;同源四倍体与对应二倍体间,Wx 基因型相同时,AC 差异很小;而Wx 基因型发生变异时,AC 差异很大。同时,进行相关性分析,结果二倍体和四倍体水稻均存在AC、GC 与Wx 基因密切相关;而GT 与Wx 基因相关不显著。综合分析,(CT)n微卫星标记与PCR-Acc Ι 分子标记检测的相关系数为0.842,呈极显著正相关,可以将其结合起来进行同源四倍体新品种的选育和改良。3、利用RAPD 技术,对同源四倍体和二倍体水稻的遗传差异进行分析。17条引物在同源四倍体中扩增出178 条带(PPB=81.5%),在二倍体中扩增出173条带(PPB=76.3%);同源四倍体和二倍体的Shannon 遗传多样性指数分别为0.4848 和0.4679,多态信息量分别为0.3301 和0.3216,遗传距离分别为0.3572和0.3460;同源四倍体与其对应二倍体间遗传距离为0.1914-0.4633,平均为0.2914。表明同源四倍体的遗传多样性高于二倍体,且同源四倍体与其二倍体之间存在较大的遗传差异,这些将为水稻品种改良和新品种选育提供科学依据。上述产量、品质性状及遗传差异分析的结果,不仅有利于加快同源四倍体水稻的遗传改良进程,而且为进一步研究、利用同源四倍体水稻奠定了初步基础。 AbstractStudy on genetic diversity, yield characters and quality traitsof autotetraploid and diploid riceLiu Yuhua (Botany)Directed by Associate Prof. Tu ShengbinIn this study, diploid and autotetraploid rice, which were cultivated in ChengduInstitute of Biology were analyzed in genetic diversity, yield characters and qualitytraits.In the study, 2 diploid and 29 autotetraploid rice(2n=4x=48) materials, including4 preliminary and 25 advanced generation, were investigated for yield characters.Compared with diploid check, the pollen fertility and seed set of autotetraploiddeclined dramatically, especially in preliminary generation. F-test indicated that therewere remarkable differences among different varieties, showing that autotetraploidmaterials had strong potential for improvement. From 1996 to 2005, someautotetraploid rice had been selected and improved. T-test showed that seed setincreased obviously. The relationships among yield characters of autotetraploid ricewere analyzed. Seed set was strongly correlated with pollen fertility, total grainnumber per panicle and productive grain number per panicle; theoretical yield wasstrongly correlated with pollen fertility, productive panicle number per plant, totalgrain number per panicle, productive grain number, seed set and 1000-grain weight.Wx genotypes of 40 autotetraploid rice and 14 diploid rice were tested by usingthe (CT)n microsatellite marker and a cleaved amplified polymorphic sequence(CAPS) molecular marker named PCR-Acc Ι. Three microsatellite alleles wereproduced, i.e. Wx1, Wx2 and Wx3 both in autotetraploid and in diploid rice.Comparatively, PCR- Acc Ι molecular marker produced two genotypes, G-type andT-type for both autotetraploid and diploid rice. In this study, amylose content (AC), gel of consistency (GC) and gelatinization temperature (GT) of rice grain weremeasured and their relationships with Wx alleles were analyzed. The results showedthat variation of AC between autotetraploid and diploid rice was small when they hadthe same Wx genotype. However, variation of AC turned to be large when the Wxgenotypes were different. Actually, AC met the maximum value in Wx1 varieties andWx2 varieties the middle and Wx3 varieties the minimum. And AC was lower inautotetraploid than in diploid. Correlation analysis was done in this experiment. ACand GC of rice grain were probably controlled by Wx gene or other gene whoselocation was strictly linked to Wx gene, while GT of rice was not. The correlationcoefficient between Wx genotypes which revealed by (CT)n microsatellite marker andPCR-Acc Ι molecular marker was 0.842 with significant level. That revealed aconsistent result between the two types of markers. So it was possible to utilize boththe two types of markers to select and promote germplasm of autotetraploid rice.RAPD molecular markers were used to analyze the genetic diversity betweendiploid and autotetraploid rice. 178 repeatable bands were detected through 17 RAPDprimers with percentage of polymorphic bands was 81.5% in autotetraploid rice while173 repeatable bands were detected with percentage of polymorphic bands was 76.3%in diploid rice. According to the measurement of Shannon index, polymorphicinformation content and genetic distance, genetic diversity of autotetraploid was on ahigher level, genetic variation between autotetraploid and diploid rice was relativelyhigh. All these contributed to the genetic selection and improvement in rice breeding.As mentioned above, the results are not only helpful to promote the process ofrice improvement, but also to confirm the basic for further study of autotetraploid rice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

维生素(Vitamin)又称维他命,为“万年青”产品,是维持人体生命健康必需的一类低分子有机化合物质。维生素对人体健康的作用人们研究很多, 维生素可以增强人体对感染的抵抗力,降低出生缺陷及降低癌症和心脏病发病率等,一旦缺乏,肌体代谢就会失去平衡,免疫力下降,各种疾病,病毒就会趁虚而入;而维生素对作物影响的研究却很少。目前为止,尚无对用维生素浸种的方法来研究外源维生素是否对小麦种子萌发及幼苗生长起调节作用的报道,且对其在小麦抗逆性方面影响的研究甚少,对盐的胁迫抗性研究尚未有人报道。小麦(Triticum aestivum L.)属于拒盐的淡土性作物。盐害不利于小麦生长,严重影响小麦的产量和品质。本研究采用4 种不同维生素VB1、VC、VB6、VPP,分别对供试小麦品种川育12(红皮)、川育16(白皮)小麦浸种后,在一般自然条件下和逆境(盐胁迫条件)下,进行试验。探讨在正常情况下与在不同盐浓度条件下,各维生素及盐浓度对小麦发芽及幼苗生长的影响,并且比较两种不同皮色的小麦在相同盐胁迫条件下的差异表现,同时研究维生素处理的特异性,且哪种维生素对盐害缓解作用最佳。研究结果表明:在无盐胁迫(自然)条件下,对用4 种不同维生素VB1、VC、VB6、VPP 浸种小麦川育12、川育16 后的种子萌发及幼苗生长(幼苗的根长、根重、苗高、苗鲜重)的研究结果表明:4 种外源维生素浸种均对小麦发芽有调节作用,都能提高其最终发芽率。但是提高幅度有所差异。用VB6 浸种后的小麦提高幅度最多,VC 次之,VPP 提高幅度最小。同时,4 种外源维生素浸种对小麦种子的出芽速度及芽后长势也有一定的影响。VB6、VC 处理的小麦种子出芽速度最快,萌发后长势最好;VB1 出芽速度相对较慢,VPP 最慢,但都大于对照;VB1 处理长势略高于对照,VPP 处理的小麦长势则低于对照。从整体来看,VB6、VC处理促进效应明显, VB1 次之,而VPP 在某些方面无效甚至产生负效应。此外,相同的维生素处理对不同的品种的种子萌发、生长效果也存在差异,各种维生素作用于川育12 的效应均强于对川育16。进一步对幼苗根系TTC 还原力及幼苗叶片中硝酸还原酶活性进行测定、分析。研究发现:并非所有种类的维生素对幼苗根系TTC 还原力及幼苗叶片中硝酸还原酶活性的提高都有帮助。幼苗根系TTC 还原力在不同维生素处理下存在显著差异,而与小麦品种关系甚微。经VB6、VC 处理后,根系TTC 还原力测定值均显著高于对照,VB1 不明显,VPP 则略低于对照。VB6、VC 处理的幼苗叶片中硝酸还原酶的含量大于对照,VB1 与对照相差无几,而VPP 处理的川育12 幼苗叶片中的硝酸还原酶活性比对照CK 略高,而在川育16 中则略比对照CK 有所下降,呈现出抑制效应。综上结果表明:VB6、VC 具有促进种子发芽,幼苗生长及根系生长的作用,是较好的促生长剂;VPP 具有抑制作用,是较好的抑制剂,可进一步研究、开发利用。在盐胁迫条件下,对用4 种不同维生素VB1、VC、VB6、VPP 浸种川育12、川育16 后的种子萌发及幼苗生长(幼苗的根长、根重、苗高、苗鲜重)的研究结果表明:在不同盐浓度胁迫条件下, 各处理的种子萌发及幼苗生长均受到不同程度的抑制。随着盐浓度的增加, 发芽率、发芽指数和活力指数成下降趋势;幼苗的根长、根重、苗高、苗鲜重不断降低。4 种维生素处理间也表现出较大差异。VB6、VC 在每个处理中均保持对盐害的缓解作用,VB6 较VC 更易于促进发芽及幼苗生长。最终发芽率高,根系多、长、重,苗高高、重。而VB1、VPP 则表现出抑制作用。在高盐浓度150mM 时,4 种维生素浸种后的种子,其最终发芽率均不能达到40%,但VB6、VC 处理最终发芽率、苗重、根重均高于对照,VPP 最终发芽率、苗重、根重均低于对照。进一步对幼苗根系TTC 还原力及幼苗叶片中脯氨酸含量进行测定、分析。研究发现:不同盐浓度,不同维生素处理、不同品种间存在差异。随着盐浓度的增加(75mM,100mM,150mM),幼苗根系TTC 还原力活性成下降趋势,幼苗叶片中脯氨酸的积累量成上升趋势。VB6 处理脯氨酸含量增加最为明显,VC 次之,VPP 与对照接近,其变化幅度最小。经VB6、VC 处理后的幼苗根系还原强度,在不同盐浓度下,测定值均显著高于对照,VB1 不明显,VPP 则低于对照,产生负效应。此外,品种间表现不尽相同,相同的维生素处理,相同的盐浓度对不同的品种的种子萌发、生长效果也存在差异, 4 种维生素对川育16 的作用均强于川育12,但其影响趋势是一致的。说明VB6、VC 具有耐(抗)盐性,可以促进种子发芽和幼苗生长,是较好的耐(抗)盐拌种剂。 Vitamin is one kind of necessary low molecular compound for humans tosustain health and life. Lots of Studies have been done on the effectc of the vitaminsfor people. Vitamin can help people improve the body's natural resistance to disease,Drop the rate of birth defects、cacers and the incidence of the heart diseases. Ifpeople have less of them, the metabolism of the organism may throw off balance,immunity may drop off, and catch disease; Though the effects for Vitamin to thecrops are limited. up to now, there’s no one use soking seeds of wheats with vitaminsas a method, to study on how the effects will happen on the wheat seed germinationand seedling growth, and there are only few reserches on antireversion force forwheats ,none for the antireversion force in Sault stress condition.Wheat(Triticum aestivum L.)is sensitive to the salt, so the salt damage will doharm to wheat’s growth, it will have an unfavorable impact on the output and thequality of wheat.On this reaserch, we Soaking CHY12(red)、CHY16 (white) wheat seeds withVitamin C, B1, PP, B6 (50mg/L) as a pretreatment first. Then under two condition: one is in the normal environment the other is in different Salinity, we begin ourexperiments. Then disscuss on if the vitamin and salinity affect the wheat seedgermination and seedling growth, and what is the different between the two of them,the result shows that:Under the normal condition, after soaking seeds with VB1、VC、VB6、Vpp,we study on the their seed germination and the seeding growth(the root length andweights, The seedling heights and weights), it shows that all of those four kinds ofvitamin can adjust the seed germination, but different in The growth rate. VB6 isbest for increase, VC comes second,VPP is the worst. Meanwhile, those four vitaminalso have effect on the speed of the sprouting of the wheat. VB6、Vc can faster theseed germination most, and the seedlings are all doing well; VB1 do little effects onthe budding, Vpp is the worst, but all treatments are better than CK; but in Vi, VB1some what above the CK, while VPP lower than that. On the whole, the acceleratingeffect of VB6、VC are obvious, VB1 takes second place, but VPP in some aspects arenoneffective even have negative effect. Furthermore, different kind of seeds with thesame vitamin may different in seed germination and seedling growth, four vitaminson CHY16 is better than CHY12.More studies on TTC reductive capacity of roots and the activity of nitratereductase in the leaves, the reasult shows not all the vitamin can help the seedlings toimprove the TTC reductive capacity and the activity of nitrate reductase. TTCreductive capacity in different treatments shows significant differences,but notcorrelate to the variety of the wheat. The TTC reductive capacity of VB6、Vctreatments are all higher than CK, VB1 is nearly the same as CK, VPP is a littlelower than CK. Through the study of acivity of nitrate reductase, it shows that,VB6、VC are higher than CK ,VB1 is nearly the same as CK also, VPP is a little higher inthe CK of CHY12 but lower in CHY16. Through all the results above: VB6、Vc helpthe wheat seed germination, seedling growth and the growth of roots, is theperfectable factor of stimulating the growth; Vpp is a inhibition, that’ll be furtherreserch,and well develop and utilize in the future.Under the different Salinity condition, after soaking seeds with VB1、VC、VB6、Vpp,we study on the their seed germination and the seeding growth(the root lengthand weights, The seedling heights and weights), it shows that: under differentsalinity, the seed germination and the seedling growth of any treatment are inhibited.With the increase of the concentration, the germination rate, Vi、Gi all had fallen; theroot length and weight, the seedling heights and weights steadily sank down. There are also have pronounced difference between all treatments with four differentvitamins.VB6、VC in all treatments are alleviative the salt damage, VB6 is easier tocause to put forth buds than VC, and it’s quantitative value is the highest in theultimate germination rate, in root and seedlings’ hight and weight. Though the VPP、VB1 are seems to inhibite its growth. Under the high concentration150mM Nacl, theultimate germination rate in all treatments are below the 40%, but VB6、VC’squantitative values in any experiments are higher than CK,while VPP lower thanCK.Then we study on the TTC reductive capacity of roots and the content of Polinein leaves, the result shows that between the different salinity, different vitamintreatments, different varieties of the wheat have discrepancy.along with theincreasing concentraion of the salinity(75mM,100mM,150mM),TTC reductivecapacity of roots decreases, the accumulation of the content of Poline in leaves havean upward trend. The increase of VB6’s treatment are obviously, VC comessecond,VPP is nearly come up with CK, changes a little. In TTC reductive capacity of roots’s reserch, VB6、VC are higher than CK at any time,VB1 is not palpable,VPP is lower than CK, makes negative affect on wheat. In addition, varieties of thewheats are remain different, no matter it shows promoting or inhibiting, all fourvitamins have moreobvious effects on CHY16 than CHY12, but the tendency of theeffection are the same. It is say that VB6、VC can help wheat to standwith the saultwell, and promot in growth,they are the better reagent to mix with the seed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

小麦是世界第一大粮食作物, 而HMW- GS 是直接影响小麦品质的重要因子。我国小麦面粉的烘烤品质普遍较差, 这与我国品种缺少优质的HMW- GS 有关,因此创造与发掘新的优质谷蛋白亚基编码基因,并开展相关生化、农学、分子生物学等方面研究、探讨优质的分子机理,对于培育优质小麦新品种具有重要意义。W958是我们培育的种间远缘杂交(T.durum Desf. ×T.aestivum L)优良品系,该品系在1D染色体上具有父母本没有的新型亚基,由于此亚基在SDS- PAGE电泳中具有和1Dx5亚基一样的电泳迁移率, 因此我们将该亚基命名为1Dx5’亚基。为了进一步从分子水平确证该亚基为新亚基和在育种中利用该亚基,本研究对该亚基的遗传规律、基因分子结构、品质特性和农艺性状等进行了分析。结果表明1Dx5’亚基在品质上与1Dx5亚基一样优质,对于品质的贡献大于1Dx2亚基。1Dx5’亚基具有特异的遗传规律,在分离群体中,此亚基占有极大的比例,该特性十分有利于将其导入高产小麦遗传背景中。此外,本研究扩增出了1Dx5’亚基基因的启动子区域、N-端区域和部分中间重复区域,并比较了1Dx5’和传统的1Dx5、1Dx2亚基在此区域氨基酸序列。结果进一步证明了1Dx5’是一个新的基因。通过蛋白质结构模拟分析,认为1Dx5’亚基的优良特性可能是由于1Dx5’亚基的的中部重复区域能形成分子间较强的氢键,加大了分子间的相互作用,使1Dx5’亚基的面团具有优良的品质,这为1Dx5’亚基的应用提供了理论基础。同时,本研究还设计用于区分1Dx5’和1Dx5等位基因的分子标记,解决了利用SDS-PAGE生化标记难以将二者区分的问题。Wheat is one of the major crops utilized worldwide. Nevertheless, due to the lackof the superior HMW- GS, the wheat quality in China is not satisfying. Therefore,identification and characterization of the superior HMW- GS will lay good foundation to the wheat breeding.W958 is a new bread wheat line developed by interspecific cross (T.durum Desf.×T.aestivum L). It contains a novel HMW- GS. We have designated such subunit as1Dx5’ here for its unique character. To confirm that such subunit is innovative andbeneficial for wheat breeding program on the molecular level, we have investigated itin terms of inheritance, DNA and protein sequence, dough property and agronomictrait associated with it. The result shows that 1Dx5’is as superior as 1Dx5 in terms of dough property.In addition, we have cloned the promoter, N- terminal as well as partial centralrepetitive domain of the allele coding for this subunit. Comparison of the amino acidsequence of 1Dx5’ with that of 1Dx5 and 1Dx2 showed that the superior quality of1Dx5’ subunit may result from the degree of conservation of the repetitive sequencesby which the glutenin polymers interact via inter-chain hydrogen bonds formedbetween the subunit repetitive domains with longer subunits forming more stableinteractions. In addition, we have developed two dominant molecular markers tofacilitate the discrimination of 1Dx5’ and 1Dx5 which could no be achieved by SDS-PAGE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

禾谷孢囊线虫严重影响禾谷类作物的产量,在小麦中由禾谷孢囊线虫引起的产量损失可达30-100%。尤其在澳大利亚、欧洲、印度和中东危害严重,目前禾谷孢囊线虫已成为危害我国作物的主要病源。控制禾谷孢囊线虫的方法主要有:作物轮作、杀线虫剂、寄主抗性等等,其中基因工程方法培育抗线虫小麦品种被认为是最经济有效的方法。分离抗禾谷类孢囊线虫基因对揭示抗性基因结构与功能及其表达调控具有重要意义。 尽管小麦是重要的粮食作物,在小麦中已发现的抗禾谷孢囊线虫的基因很少,而比其近缘属如节节麦、易变山羊草、偏凸山羊草中含有丰富的抗源。目前已鉴定出禾谷孢囊线虫抗性位点Cre,并发现了9个禾谷孢囊线虫抗性基因(Cre1,2, 3, 4, 5, 6, 7, 8, and R) ,其中只有Cre1和Cre8直接从普通小麦中获得。从节节麦中获得的Cre3基因能最有效的控制线虫数量,其次是Cre1和Cre8。这些基因的克隆对于了解禾谷孢囊线虫抗性机制及进一步的育种应用都是非常关键的。然而,目前为止仅有Cre3基因通过图位克隆的方法从节节麦中被分离得到。该基因已被克隆得到的多数线虫抗性基因一样均属于核苷酸结合位点区(NBS)-亮氨酸重复序列区(LRR)基因家族。目前,已有很多抗性基因被分离,这些已知的NBS-LRR类抗性基因的保守序列为应用PCR的方法克隆新的抗性基因提供了可能。 因此本课题的目的是采用保守区同源克隆、3′RACE 和5′RACE 等方法从抗禾谷孢囊线虫小麦-易变山羊草小片段易位系E10 中克隆小麦抗禾谷孢囊线虫基因全序列,进而通过半定量PCR 和荧光定量PCR 研究该基因的表达模式。同时通过mRNA 差别显示技术和任意引物PCR(RAP-PCR)技术分离克隆植物禾谷孢囊线虫抗性基因及其相关基因,为阐明植物抗病性分子机制以及改良作物抗病性和作物育种提供基础,为通过分子标记辅助育种和基因工程方法实现高效、定向转移抗病基因到优良小麦品种奠定了重要的理论和物质基础。主要研究结果: 1. 本实验根据此前从抗禾谷孢囊线虫材料E-10 扩增得到的与来自节节麦的抗禾谷孢囊线虫Cre3 基因及其他的NBS-LRR 类抗性基因的NBS 和LRR 保守区序列设计了两对特异性引物,从E10 中扩增到532bp 和1175bp 的两个目标条带,它们有一个32bp 的共同序列,连接构成总长为1675bp 的NBS-LRR 编码区(命名为RCCN)。根据RCCN设计引物,利用NBS-LRR区序列设计引物,通过5′RACE 和3′RACE 技术采用3′-Full RACE Core Set(TaKaRa)和5'-Full RACE Kit (TaKaRa)试剂盒,反转录后通过嵌套引物GSP1 和GSP2 分别进行两轮基因特异性扩增,分别将NBS_LRR 区向5′端和3′端延伸了1173bp 和449bp,并包含了起始密码子和终止密码子。根据拼接的得到的序列重新设计引物扩增进行全基因扩增的结果与上面获得的一致。拼接后得到全长2775 bp 的基因序列(记作CreZ, GenBank 号:EU327996)。CreZ 基因包括完整的开放阅读框,全长2775 bp,编码924个氨基酸。序列分析表明它与已知的禾谷孢囊线虫抗性基因Cre3的一致性很高,并且它与已经报到的NBS-LRR 类疾病抗性基因有着相同的保守结构域。推测CreZ基因可能是一个新的NBS-LRR 类禾谷孢囊线虫抗性基因,该基因的获得为通过基因工程途径培育抗禾谷孢囊线虫小麦新品种奠定了基础,并为抗禾谷孢囊线虫基因的调控表达研究提供了参考。 2. 通过半定量PCR和SYBR Green荧光定量PCR技术对CreZ基因的相对表达模式进行了研究。以α-tubulin 2作为参照,采用半定量PCR 分析CreZ 基因在不同接种时期1d, 5d, 10, 15d 的E-10的根和叶的的表达情况。在内参扩增一致的条件下,CreZ 在E-10的根部随着侵染时间的增加表达量有明显的增加,在没有侵染的E-10的根部其表达量没有明显变化,而在叶中没有检测表达,说明该基因只在抗性材料的根部表达。SYBR Green定量PCR分析接种前后E10根部基因CreZ基因的表达水平为检测CreZ基因的表达建立了一套灵敏、可靠的SYBRGreen I 荧光定量PCR 检测方法。接种禾谷孢囊线虫后E10根内CreZ基因的相对表达水平显著高于接种前。随接种时间的延长持续增加,最终CreZ基因的相对表达量达到未接种的对照植株的10.95倍。小麦禾谷孢囊线虫抗性基因CreZ的表达量与胁迫呈正相关,表明其与小麦的的禾谷孢囊线虫抗性密切相关,推测CreZ基因可能是一个新的禾谷孢囊线虫候选抗性基因。 3. 针对小麦基因组庞大、重复序列较多,禾谷孢囊线虫抗性基因及其相关基因的片断难以有效克隆的问题,通过mRNA 差别显示技术及RAP-PCR 技术分离克隆植物禾谷孢囊线虫抗性及其相关基因。试验最终得到154 条差异表达条带,将回收得到的差异条带的二次PCR 扩增产物经纯化后点到带正电的尼龙膜上,进行反向Northern 杂交筛选,最终筛选得到102 个阳性差异点。将其中81 个进行测序,并将序列提交到Genbank 中的dbEST 数据库,分别获得登录号(FE192210 -FE192265,FE193048- FE193074 )。序列比对分析发现,其中26 个序列与已知功能的基因序列同源;有28 条EST 序列在已有核酸数据库中未找到同源已知基因和EST,属新的ESTs 序列;另外27 个EST 序列与已知核酸数据库中的ESTs 具有一定相似性,但功能未知。其所得ESTs 序列补充了Genbank ESTs 数据库,为今后进一步开展抗禾谷类孢囊线虫基因研究工作打下了基础。结合本试验功能基因的相关信息,对小麦接种禾谷孢囊线虫后产生的抗性机制进行了探讨。接种禾谷孢囊线虫后植物在mRNA 水平上的应答是相当复杂的,同时植物的抗病机制是一个复杂的过程,涉及到多个代谢途径的相互作用。 The cereal cyst nematode (CCN), Heterodera avenae Woll, causes severe yieldreductions in cereal crops. The losses caused by CCN can be up to 30-100% in somewheat fields. At present, cereal cyst nematode has become the major disease sourcein China and it also damaged heavily in Australia, Europe, India and Middle East.The damage caused by CCN can be mitigated through several methods, includingcrop rotation, nematicide application, cultural practice, host resistance, and others.Of these methods, incorporating resistance genes into wheat cultivars and breedingresistant lines is considered to be the most cost-effective control measure forreducing nematode populations. Although wheat is an economically important crop around the world, far fewergenes resistant to CCN were found in wheat than were detected in its relatives, suchas Aegilops taucchi, Aegilops variabilis and Aegilops ventricosa. Cloning these genesis essential for understanding the mechanism of this resistance and for furtherapplication in breeding. Because of the huge genome and high repeat sequencescontent, the efficient methods to clone genes from cereal crops, are still lacking. A resistance locus, Cre, has been identified and 9 genes resistant to CCN (designatedCre1, 2, 3, 4, 5, 6, 7, 8, and R) have been described, in which Cre1 and Cre8 werederived directly from common wheat. The Cre3 locus, which was derived from Ae.tauschii, has the greatest impact on reducing the number of female cysts, followed byCre1 and Cre8. Cloning these genes is essential for understanding the mechanism ofthis resistance and for further application in breeding. However, to this point, only Cre3, a NBS-LRR disease resistance gene, has been obtained through mappingcloning in Ae. tauschii. The majority of nematode resistance genes cloned so far belong to a super familywhich contains highly conserved nucleotide-binding sites (NBS) and leucine-richrepeat (LRR) domains. To date, many NBS-LRR resistance genes have been isolated.The conserved sequences of these recognized NBS-LRR resistance genes provide thepossibility to isolate novel resistance genes using a PCR-based strategy. The aim of the present study was to clone the resistance gene of CCN fromWheat/Aegilops variabilis small fragment chromosome translocation line E10 whichis resistant to CCN and investigate the espression profiles of this gene withsemi-quantitative PCR and real-time PCR. Another purpose of this study is cloningthe relational resistance gene for CCN by mRNA differential display PCR andRAP-PCR. These works will offer a foundation for disease defence of crop andbreeding and directional transferring resistance gene into wheat with geneengineering. Primary results as following: 1.According to the conversed motif of NBS and LRR region of cereal cystnematode resistance gene Cre3 from wild wheat (Triticum tauschlii) and the knownNBS-LRR group resistance genes, we designed two pairs of specific primers for NBSand LRR region respectively. One band of approximately 530bp was amplified usingthe specific primers for conversed NBS region and one band of approximately 1175bpwas amplified with the specific primers for conversed LRR region. After sequencing,we found that these two sequences included 32bp common nucleotide having 1675bpin total, which was registered as RCCN in the Genbank. Based on the conservedregions of known resistance genes, a NBS-LRR type CCN resistance gene analog wasisolated from the CCN resistant line E-10 of the wheat near isogenic lines (NILs), by5′RACE and 3′ RACE.designated as CreZ (GenBank accession number: EU327996) .It contained a comlete ORF of 2775 bp and encoded 924 amino acids. Sequencecomparison indicated that it shared 92% nucleotide and 87% amino acid identitieswith those of the known CCN-resistance gene Cre3 and it had the same characteristic of the conserved motifs as other established NBS-LRR disease resistance genes. 2. Usingα-tubulin 2 as exoteric reference, semi-quantitative PCR and real-timePCR analysis were conducted. The expression profiling of CreZ indicated that it wasspecifically expressed in the roots of resistant plants and its relative expression levelincreased sharply when the plants were inoculated with cereal cyst nematodes. therelative expression level of the 15days-infected E10 is the 10.95 times as that ofuninfected E10,ultimately. It was inferred that the CreZ gene be a novel potentialresistance gene to CCN. 3.We cloned the relational resistance gene for CCN by mRNA differentialdisplay PCR and arbitrarily primed PCR fingerprinting of RNA from wheat whichpossess huge and high repeat sequence content genomes. Total 154 differentialexpression bands were separated and second amplified by PCR. The products werenylon membrane. The 102 positive clones were filtrated by reverse northern dot blotand 81 of those were sent to sequence. The EST sequences were submitted toGenbank (Genbank accession: FE192210 - FE192265, FE193048 - FE193074). Thesequences alignment analysis indicated 26 of them were identical with known genes;28 were not found identical sequence in nucleic acid database; another 27 ests wereidentical with some known ests, but their functions were not clear. These ESTsenriched Genbank ESTs database and offered foundation for further research ofresistance gene of CCN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

株高是农作物的重要农艺性状之一,适度矮化有利于农作物的耐肥、抗倒、高产等。20世纪50年代,以日本的赤小麦为矮源的半矮秆小麦的培育和推广,使得世界粮食产量显著增长,被誉为“绿色革命”。迄今为止,已报到的麦类矮秆、半矮秆基因已达70多个,但由于某些矮源极度矮化或者矮化的同时伴随不利的农艺性状,使得真正运用于育种实践的矮源较少。因此,发掘和鉴定新的控制麦类作物株高的基因,开展株高基因定位、克隆及作用机理等方面的研究,对实现麦类作物株高的定向改良,具有重要的理论意义和应用价值。簇毛麦(Dasypyrum villosum,2n=14,VV)是禾本科簇毛麦属一年生二倍体异花授粉植物,为栽培小麦的近缘属。本课题组在不同来源的簇毛麦杂交后代中发现了一株自然突变产生的矮秆突变体。观察分析了该突变体的生物学特性,对矮秆性状进行了遗传分析,对茎节细胞长度、花粉的活力进行了细胞学观察,考察了该突变体内源赤霉素含量及不同浓度外施赤霉素对突变体的作用,分析了赤霉素生物合成途径中的内根贝壳杉烯氧化酶(KO)和赤霉素20氧化酶(GA20ox)的转录水平,对赤霉素20氧化酶和赤霉素3-β羟化酶(GA3ox)进行了克隆和序列分析,并对GA20ox进行了原核表达和表达的组织特异性研究。主要研究结果如下:1. 该突变体与对照植株在苗期无差异,在拔节后期才表现出植株矮小,相对对照植株,节间伸长明显受到抑制,叶鞘长度基本不变。在成熟期,对照植株的平均株高为110cm,而突变株的平均株高为32cm,仅为对照植株的1/3 左右。除了株高变矮以外,在成熟后期,突变株还表现一定程度的早衰和雄性不育。I2-KI染色法观察花粉活力结果表明,对照植株花粉90%以上都是有活力的,而突变植株的花粉仅20%左右有活力。2. 突变株与对照植株的杂交F1代均表现正常株高,表明该突变性状为隐性突变。F1代植株相互授粉得到的168株F2代植株中,株高出现分离,正常株高(株高高于80cm)与矮秆植株(株高矮于40cm)的株数比为130:38,经卡方检验,其分离比符合3:1的分离比,因此推测该突变体属于单基因的隐性突变。3. 用ELISA方法检测突变株和对照植株的幼嫩种子中内源性生物活性赤霉素(GA1+3)含量,结果表明突变株的赤霉素含量为36 ng/ml,而对照植株的赤霉素含量为900 ng/ml。对突变株外施赤霉素,发现矮秆突变株的株高和花粉育性均可得到恢复。这些结果表明该突变株为赤霉素缺陷型突变。4. 用荧光定量PCR方法比较突变株与对照植株中内根贝壳杉烯氧化酶和赤霉素20氧化酶的转录水平,结果表明突变株的KO转录水平比对照植株分别提高了6倍(苗期)和16倍(成熟期),突变株的GA20ox转录水平与对照植株在苗期无明显差异,在成熟期突变株较对照植株则提高了10倍左右。这些结果表明该矮秆突变体与赤霉素的生物合成途径密切相关,而且极有可能在赤霉素的生物合成途径早期就发生了改变。5. 以簇毛麦总基因组为模板,同源克隆了GenBank登录号为EU142950,RT-PCR分离克隆了簇毛麦的GA3ox基因cDNA全长序列,分析结果表明该cDNA全长1206bp,含完整编码区1104bp,推测该序列编码蛋白含368个氨基酸残基,分子量为40.063KD,等电点为6.27。预测的氨基酸序列含有双加氧酶的活性结构,在酶活性中心2个Fe离子结合的氨基酸残基非常保守。该序列与小麦、大麦和水稻的GA3ox基因一致性分别为98%、96%、86%。基因组序列与cDNA序列在外显子部分一致,在478-715bp和879-1019bp处分别含238bp和140bp的内含子。6. 通过RT-PCR技术克隆了簇毛麦的GA20ox基因全长,命名为DvGA20ox,GenBank登录号为EU142949。该基因全长1080个碱基,编码359个氨基酸,具有典型的植物GA20ox基因结构。该基因编码的蛋白质与小麦、大麦、黑麦草等GA20ox蛋白的同源性分别为98%,97% 和91%。该序列重组到原核表达载体pET-32a(+)上,将获得的重组子pET-32a(+)-DvGA20ox转化大肠杆菌BL21pLysS后用IPTG进行诱导表达。SDS-PAGE分析表明,DvGA20ox基因在大肠杆菌中获得了高效表达,融合蛋白分子量为55kDa。定量PCR分析表明,该基因在簇毛麦不同器官中的表达差异明显:叶片中表达水平最高,根部表达水平次之,茎部和穗中表达较弱。在外施赤霉素后,该基因的表达水平在两小时以后急剧下降,表明该基因的表达受自身的反馈调节。本研究结果认为,(1)该簇毛麦矮秆突变体为单基因的隐性突变;(2)该矮秆突变体为赤霉素敏感突变,内源赤霉素含量检测表明突变体的内源性赤霉素含量仅为对照植株的1/30;(3)荧光定量PCR结果表明突变株的赤霉素生物合成途径的关键酶基因表达水平比对照植株高,而且突变植株的赤霉素生物合成改变很可能发生在赤霉素生物合成途径的早期;(4)GA20ox有表达的组织特异性,且受到自身产物的反馈调节。 Plant height is an impotrant agronomic trait of triticeae crops.Semi-dwarf cropcultivars, including those of wheat, maize and rice, have significantly increased grainproduction that has been known as “green revolution”. The new dwarf varieties couldraise the harvest Index at the expense of straw biomass, and, at the sametime, improvelodging resistance and responsiveness to nitrogen fertilizer. Moreover, dwarf traits ofplant are crucial for elucidating mechanisms for plant growth and development aswell. In many plant species, various dwarf mutants have been isolated and theirmodles of inheritance and physiology also have been widely investigated.The causesfor their dwarf phenotypes were found to be associated with plant hormones,especially, gibberellins GAs.Dasypyrum villosum Candargy (syn.Haynaldia villosa) is a cross-pollinating,diploid (2n = 2x = 14) annual species that belongs to the tribe Triticeae. It is native toSouthern Europe and West Asia, especially the Caucasuses, and grows underconditions unfavorable to most cultivated crops. The genome of D. villosum,designated V by Sears, is considered an important donor of genes to wheat for improving powdery mildew resistance, take-all, eyespot, and plant and seed storageprotein content. A spontaneous dwarf mutant was found in D. villosum populations.The biological character and modles of inheritance of this dwarf mutant are studied.The cell length of stem cell is observed. The influence of extraneous gibberellin tothe dwarf mutant is also examined; the transcript level of key enzyme of gibberellinbiosynthesis pathway in mutant and control plants is compared. GA3ox and GA20oxare cloned and its expression pattern is researched.1. The dwarf mutant showed no difference with control plants at seedlingstage.At mature stage, the average height of control plants were 110cm and the dwarfplants were 33cm. The height of the mutant plant was only one third of the normalplants due to the shortened internodes. Cytology observation showed that theelongation of stem epidermal and the parenchyma cells were reduced. The dwarfmutant also shows partly male sterile. Pollen viability test indicates that more than80% of the pollen of the mutant is not viable.2. The inheritance modle of this dwarf mutant is studied. All The F1 plantsshowed normal phenotype indicating that the dwarfism is controlled by recessivealleles. Among the 168 F2 plants, there are 130 normal plants and 30 dwarf plants, thesegregation proportion accord with Mendel’s 3:1 segregation. We therefore proposethat this dwarf phenotype is controlled by a single recessive gene.3. Quantitative analyses of endogenous GA1+3 in the young seeds indicated thatthe content of GA1+3 was 36ng/ml in mutant plants and 900ng/ml in normal plants.The endogenous bioactive GA1+3 in mutant plants are only about 1/30 of that innormal plants. In addition, exogenously supplied GA3 could considerably restore themutant plant to normal phenotype. These results showed that this mutant wasdefective in the GA biosynthesis.4. More than ten enzymes are involved in GA biosynthesis. KO catalyzes thefirst cytochrome P450-mediated step in the gibberellin biosynthetic pathway and themutant of KO lead to a gibberellin-responsive dwarf mutant. GA20ox catalyze therate-limited steps so that their transcript level will influence the endogenous GAbiosynthesis and modifies plant architecture. The relative expression levels of genesencoding KO and GA20ox were quantified by real time PCR to assess whether thechanges in GA content correlated with the expression of GA metabolism genes andwhere the mutant occurred during the GA biosynthesis pathway. In mutant plants,the transcript levels of KO increased about 6-fold and 16-fold at the seedling stage and elongating stage respectively comparing with the normal plants. For theseedlings, there was no notable difference in the expression of GA20ox betweenmutant and normal plants. At the elongating stage, GA20ox transcript increased 10times in mutant plants, suggesting that the GA biosynthesis pathway in mutant plantshad changed from the early steps rather than the late steps.5. A full length cDNA of D. villosum gibberellin 3β-hydroxylase homology(designated as DvGA3ox) was isolated and consisted of 1206bp containing an openreading frame of 1104bp encoding 368 predicted amino acid residues. Identityanalysis showed that the gibberellin 3β-hydroxylase nucleotide sequence shared 98%,96% and 86% homology with that of wheat, barley and rice. The predicted peptidecontained the active-site Fe of known gibberellin 3β-hydroxylase and the regionhomologous to wheat, barley and Arabidopsis. The genomic clone of gibberellin3β-hydroxylase has two introns.6. The full-length cDNA of D. villosum gibberellin 20 oxidase (designated asDvGA20ox) was isolated and consisted of 1080-bp and encoded 359 amino acidresidues with a calculated mol wt of 42.46 KD. Comparative and bio-informaticsanalyses revealed that DvGA20ox had close similarity with GA20ox from otherspecies and contained a conserved LPWKET and NYYPXCQKP regions. Tissueexpression pattern analysis revealed DvGA20ox expressed in all the tissues that wereexamined and the highest expression of DvGA20ox in expanding leaves followed byroots. Heterologous expression of this cDNA clone in Escherichia coli gave a fusionprotein that about 55KD. Transcript levels of DvGA20ox dramatically reduced twohours after application of biologically active GA3, suggesting that the biosynthesis ofthis enzymes might be under feedback control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

梗稻广亲和种质02428h中倒一节间伸长的性状由一对隐性基因(h基因)所控制,本实验证明了将h基因导入保持系与雄性不育系中均能得到遗传表达,促进倒一节的伸长。h基因与可育胞质及野败不育胞质作用后分别使穗伸出度达15cm,1.2cm,而相应珍汕97B及珍汕97A穗伸出度仅分别为1.7cm,-9.8cm。即h基因使穗伸出度分别提高8.8倍及1.2倍。因此,利用h基因有可能充分消除雄性不育系的包颈现象。The character of greatly elongated uppermost internode of wide compatible japonica rice 02428h iscontrolled by a recessive gene(b gene). The study shows that h gene could get genetic expression in maintaince andmale-sterile line(MS-line) and make the uppermost internode elonged. H gene interacts with the fertile and wild abortive male sterile cytoplasm make panicie neck exsert to 15cm and 1.2cm, while panicle neck exsertions of parents zhenshan 97B and A were 1.7cm and -9.8cm. So, h gene makes panicle necks exsert 8.8 and 1.2 times repectively. Its is possible to introduce h gene into male-sterile line so as to eliminate panicle endosure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

绞股蓝(Gynostemma pentaphyllum)系葫芦科绞股蓝属植物,药用价值广泛,但其野生资源日趋减少,绞股蓝主要药效成分为绞股 蓝皂甙。利用组织和细胞培养生产绞股蓝皂甙是合理开发利用和保护绞股蓝资源的可能途径之一。本文对绞股蓝组织培养中培养基 的蔗糖和激素的组成以及各种胁迫条件:渗透压、重金属离子、真菌诱导物等对皂苷产量的影响进行了初步研究。其中,渗透压、 重金属离子、真菌诱导物对绞股蓝愈伤组织皂甙产量的影响尚未见报道。1. 蔗糖对绞股蓝愈伤组织之生长影响显著,2,4-D对绞股 蓝愈伤组织皂甙含量、产量影响显著。增加蔗糖用量,减少2,4-D的用量可提高皂甙产量。2. Mn++ 用量的提高抑制绞股蓝愈伤组 织的生长,但可促进皂甙含量、产量的提高。Mn++用量提高至MS培养基的20-30倍时可使皂甙产量增加近一倍,而提高Cu++浓度的 作用不明显。3. 甘露醇用量增加抑制绞股蓝愈伤组织的生长,但可使皂甙含量、产量提高。0.680mol·l-1甘露醇可使皂甙产量提 高83%,而Nacl较大抑制愈伤组织的生长并使皂甙产量降低。4. 米曲霉粗提物对绞股蓝愈伤组织生长先略微促进,然后抑制,而根 霉粗提物则使愈伤组织生长受抑制;两者对皂甙含量、产量的作用相似:在较低浓度范围内升高,然后下降。米曲霉粗提物可提高 产量一倍,根霉粗提物可提高42%。这些结果为高产细胞系的筛选和生长、生产培养条件的优化积累了资料。在综述部分,对植物 细胞培养中组织和器官分化、细胞结构变化、生化水平的变化与次生物合成和积累的关系作了讨论。Gynostemma pentaphyllum blongs to Gynostemma, Cucurbitaccae. It has a wide medical use, but its wild resource is threatened by people's excessive use. Its effective medical components are gypenosides. For reasonable use and protect its resource, it is a possible way to product gypenosides by plant tissue and cell culture. This paper has a primary study on the components of sucrose and hormones and a variety of stress conditions: osmostic pressure, heavy metal ion, fungal elicitors in the medium for the calli culture. The effects of osmostic pressure, heavy metal ion and fungal elicitors on the calli of Gynostemma pentaphyllum have not been reported. 1. Sucrose had a significant effect on the growth of the calli, 2,4 D had notable effects on the gypenosides content and production of the calli. Increased the concentration of sucrose and decreased the concentration of 2,4 D improved the production of gypenosides. 2. Increased the concentration of Mn++ inhibited the growth of the calli, but improved the content and production of gypenosides. The optimum concentration was 20-30 times as MS medium which improved the production 100%. Increased the concentration of Cu++ had not a notable effect. 3. Increased the concentration of mannitol inhibited the growth of the calli, but improved the content and production of gypenosides. The optimum concentration was 0.680mol·l-1 which improved the production 83%. Nacl apparently inhibited the growth of the calli and decreased the production of gypenosides. 4. The crude preparation of Aspergillus oryzae inhibited the growth of the calli that in low concentration. The crude praparation of Rhizopus formosensis inhibited the growth of the calli throughout. Their effects on the content and production of gypenosides are alike, but the former is higher than the latter. On the optimum concentration, each crude preparation improved the production 100% (Aspergillus oryzae), 42%(Rhizopus formosensis). These results has accumulated some informantion on the select of high yield cell strains and choose the best culture conditons for the growth and gypenosides product of the calli. In the review, it is discussed that the differentiation on tissue-organal, cellular and biochemical levels related to the synthesis and accumulation of secondary metabolites in plant culuture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

用ACHT处理黑麦萌动种子,对修复前后材料的观察和分析结果表明:1. ACHT操作引起染色体数目变化和染色体断裂损失。在一定 条件和范围内,不同处理引起的这种变化具有显著差异,条件越剧烈,染色体数目变化的范围和频率愈大,断片发生的数量和频率 也愈高,同时修复前后染色体数目的变化范围和频率与断片发生的数量和频率以及它们的修复频率均表现明显的相关性。2. ACHT 操作引起染色体畸变的多样性。经ACHT处理后,胚根细胞染色体有4种断裂方式,包括着丝粒断裂、次溢痕断裂、长臂断裂和短臂 断裂等,其中着丝断裂频率最高;产生6种断片类型,包括有着丝粒和端粒的、有着丝粒而无端粒的、有部分着丝粒和端粒的、有 部分着丝粒而无端粒的、只有端粒的、既无着丝粒也无端粒的断片等。3. ACHT操作引起遗传结构重建的多样性。经ACHT处理后, 对修复24-72小时材料进行核型比较(按Stebbins 和 Levan 标准)和随体分析,处理细胞在染色体数目、大小、形态、位置等方面 均发生显著变化,说明ACHT处理使这些细胞的染色体结构和染色体组型发生了深刻变化。进一步通过Giemsa C— 带分析,观察到 多种重建染色体类型,包括易位型染色体、附加型染色体、无着丝粒染色体、化染色体、增加的m染色体以及某些带型特异的染色 体等。4. RAPD 分析从分子水平上验证了ACHT能有效地引起遗传结构的改变。所用10种引物对处理和对照材料基因组DNA的扩增产 物在条带数目、条带位置及带型特征等方面均有明显差异,其中4种引物出现条带减少,6种引物出现条带增加,后者还包括一个带 位移动。这说明两种材料的基因组DNA具有明显的RAPD反应多态性差异。This paper descripes some results draw on the basis of the observation and analysis on the rye before and after repaired through treating its budding seeds by ACHT in contrast to without ACHT: 1. ACHT manipulation caused the number variation and breakage damage of rye chromosome. Within certain conditions and timits, this phenomenon caused by different treats had signifcant difference: the more the treatment condition is drastie, the more the chageable range and frequence of rye chromosomae number, and so is the produced fragments. Meanwhile, there existed striking relationship among the changeable range and frequence of rye chromosome, the produced number and frequence of fragments and repairing frequence. 2. ACHT manipulafion engendered the diversify of rye chromosomal aberration. Four breakage patterns and six sorts of fragment were observed by watching the chromosome of the rye radicle treated by ACHT, including centric breakage (occuring in the highest frequence), secondary constriction breakage, long arm breakage and short arm breakage to the former, Comprising that with both centromere and telomere, that with centromere and without telomere, that with partial centromere and with telomere, that with partfial ceetromere and without telomere, that only with telomere and that neither with centromere nor with telomere, etc. 3. ACHT manipulation engendered the diversify or rye genetic structs reconstruction. Karureotype analysis(according to Stebbins and Levan) and satellite anaeysis were carried out to rye radicle through 24-72-hour-long recoverage after ACHT manipulation, which showed remarkable change happened on the rye chromosomal number、shape、arm ration and pattern, etc. and also on the satellite number、size、shape and location etc. Those indicated that ACHT manipulation engendered violent changes to rye chromatin structure and chromosome type. Further Giemsa C-banding analysis showed many types of reconstructed chromosome, such as translocation、addition、without centromere、st and other chromosome. 4. RAPD analysis checked the validity of ACHT on changing genetic structure of rye on the level of molecular biology. The treated and recovered rye has different amplifying band pattern by using IO valid arbitary primers selected from 40 comparing with the control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

近年来,随着黑素细胞生物学的发展和对美白剂功效研究的不断深入,美白剂对皮肤正常生理潜在的负面影响正逐渐为人们所重视 ,仅仅通过临床皮肤敏感试验已远不能给以科学的解释,因而建立一个科学量化的美白剂评价体系就显得尤为迫切和必要。本文工 作旨在将体外黑素细胞原代培养与黑素生成相关的生化指标(包括:黑度,细胞量,铬氨酸酶TYR,多巴色素异构酶DT酶活的), 检测相结合,并联系细胞学观察,从而形成一整套相对完善,定性定量的研究美白剂功效的评价体系。通过测定外加a-MSH,内皮素 ET-1及其拮抗剂GD2168后黑素细胞内上述生化指标的变化,不仅验证了a-MSH,内皮素ET-1的促黑作用,内皮素拮抗剂GD2168的美 白功效,而且还体现出本评价体系不同于国内现有的其它美白评价体系的独特优势。首先,本评价体系在国内为首家将原代培养的 黑素细胞用于美白评价,由于原代培养环境与体内皮肤生理环境的相似性,在体外对10-8mol/La-MSH产生了正常的应答,所以在评 价美白剂的功效时该培养体较之将黑素细胞孤立生长的纯化培养体系更为科学也更具有说服力。尤其值得一提的是,国内现有的生 化水平的美白评价多局限于对TYR活力的测定,而本体系的另一特点就是除了TYR外还增加了对TRP-2即DT酶活的测定,由于DT在维 持正常黑素细胞及皮肤生理上的重要意义,对其变化的研究往往可揭示出美白剂对皮肤的潜在毒性,本文通过测定并分析内皮素拮 抗剂GD2168对体外黑素细胞DT活力的下调作用,对其潜在的副作用进行了科学的预测,这项工作国内尚无人开展。Over the past few years, melanin cell research has experienced unprecedent impetus, which also contribute to the study on lightener's function especially it's potent skin damage. As a result, it's the high time to build a more accurate and complete evaluation system to investigate lightener's effects and by-effects as well. After normal human melanocytes were cultured primarily in vitro, the effects of a-MSH, endothelin-1(ET-1)and ET -1's antagonist GD2168 on melanogenesis were studied biochemically by measurement of melanin content, cell-number, tyrosinaseTYR activity and dopachrome tautomeraseDT activity. Compared with untreated cells, the treated cells responsed to 10-8mol/L a-MSH with the increase in all items. ET-1 induced both an increae in DT activity and melanin concent; however, the melanosynthesis increase was inhibited significantly in the present of GD2168. Trough above work, a new evaluation system of lightener has been established and confirmed to be feasible. Different from other evaluation systems present in country, this system used the primary culture, which was more consistent to the physiological circumstance. Moreover, the system added DT activity assay that help reveal the GD2168's potent side-effects, which would have been clouded or ignored if only TYR activity was assayed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

应用花粉管通道技术将新疆大赖草总DNA导入小麦,用高重序列分析方法,已为大赖草总DNA转入小麦提供了初步的分子证据。在转 化后代中选育出稳定遗传的大穗变异株系,分析表明,这些转化株中蛋白质含量明显增高(13%-17%)。对基因供体新疆大赖草、受 体春麦761、转化株的高分子量谷蛋白亚基(HMW-GS)进行了SDS-PAGE分析,发现这些转化株中HMW-GS发生了很大变化,并在此基础 上,用来自小麦基因组的四对特异引物,以PCR方法扩增供体、受体以及转化株的1Ax、1Bx、1Dx及1Ay、1By、1Dy型HMW-GS全基因 ,比较他们扩增产物的差异,结果表明,受体与转化株在HMW-GS基因1Ax、1Bx位点上的扩增产物差异不大,在HMW-GS基因位点1Dx 和y型基因上的扩增产物有较大差异,说明了受体在基因位点1Dx、1Ay、1By和1Dy上可能发生了多位点插入,可能由于这些基因位 点上的插入引起了转化株的高分子量谷蛋白亚基(HMW-GS)的变化,这就再一次为大赖草总DNA导入提供了直接的分子证据。虽然大 赖草总DNA导入提高了小麦蛋白质的含量,改变了HMW-GS的组成,部分改变了品质评分,但我们感到这些转化株在品质改良方面仍 有很大余地,如何更好地利用新疆大赖草蛋白质的优良特性及避免总DNA导入给转化株带来的不良性状,一个大赖草HMW-GS基因正 被分离及克隆,并准备将其利用于未来的品质育种当中。Total DNA of Leymus racemosus had been transformed into wheat through pollen tube pathway. Analysis of the repeated gene sequence had provided an elementary proof. Some variant cultivars with big ear were screened from their offsprings, and their protein content increased greatly from 13% (receptor)to 17%(transformed). The result from SDS-PAGE analysis of high-molecular-weight glutenin subunits(HMW- GS) respectively in donor(Xinjiang Leymus racemosus), receptor(spring wheat cultivar 761)and transformed wheats, showed the HMW-GS composition changed in the transformed plants. On the basis of the research, Four special pairs primers from wheat(T.aestivum L.) genome were used to amplify complete coding regions of HMW-GS genes on 1Ax、1Bx 、1Dx and 1Ay、1By、1Dy loci of donor、receptor and the big ear transformed cultivars. By comparing amplified PCR products. Faint differences were found among receptor and transformed cultivar's 1Ax、1Bx PCR amplifed products and apparent differences on those of 1Dx、y-typePCR product. We gueseed that there may be some DNA inserts in 1Dx 、1By、1Dy loci resulted in the changes of the HMW-GS among transformed cultivars. This provides second direct molecular witness to the exogenous DNA introduction. Even though the transformed plants have higher protein content, changed HMW-GS composition, partially improved process quality, there still leave much work to improve quality. In order to make full use of the excellent property of Leymus racemosus protein and avoid the disadvantages introducced by total DNA transformation, a HMW-GS gene of Leymus racemosus was being isolated and cloned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

穗发芽(PHS,preharvest sprouting)是影响禾本科作物生产的重要的灾害之一。收获时期如遇潮湿天气容易导致穗发芽发生。发生穗发芽的种子内部水解酶(主要是α-淀粉酶)活性急剧升高,胚乳贮藏物质开始降解,造成作物产量和品质严重降低。因此,选育低穗发芽风险的品种是当前作物育种工作中面临的重要任务。 青稞(Hordeum vulgare ssp. vulgare)主要分布于青藏高原,自古以来就是青藏高原人民的主要粮食。近年来,由于青稞丰富的营养成分和特有的保健品质、在燃料工业中的潜力以及在啤酒酿造工业中的利用前景,在发达国家日趋受到重视,掀起综合研究利用的热潮。我国拥有占全世界2/3 以上的青稞资源,具有发展青稞产业的得天独厚的条件。然而,由于青稞收获期间恰逢青藏高原雨季来临,常有穗发芽灾害发生,使青稞生产损失巨大。目前对青稞穗发芽研究很少,适用于育种的穗发芽抗性材料相对缺乏,不能很好的满足青稞穗发芽抗性育种的需要。本研究以青藏高原青稞为材料,对其穗发芽抗性的评价指标和体系进行构建,同时筛选青稞抗穗发芽品种并对其抗性进行评价,还利用分子生物学手段对青稞穗发芽抗性的分子机理进行了初步探讨。主要研究结果如下: 1. 本试验以来自于我国青藏高原地区的青稞为材料,对休眠性测定的温度范围进行探讨,并对各种穗发芽抗性测定方法的对青稞的适用性进行评测。通过探讨温度对13 个不同基因型的青稞籽粒发芽和休眠性表达的影响,对筛选青稞抗穗发芽资源的温度条件进行探索,并初步分析了其休眠性表达的机理。在10,15,20,25,30℃的黑暗条件下,选用新收获的13 个青稞品种为材料进行籽粒发芽实验,以发芽指数(GI)评价其休眠性。结果发现,不同品种对温度敏感性不同,其中温度不敏感品种,在各温度条件下均表现很低的休眠性;而温度敏感品种,其休眠性表达受低温抑制,受高温诱导。15℃至25℃是进行青稞休眠性鉴定的较适宜的温度范围。通过对供试材料发芽后的α-淀粉酶活性,发现温度对青稞种子的休眠性表达的影响至少在一定程度上表现在对α-淀粉酶活性的调控上。随后,对分别在马尔康和成都进行种植的34 份青稞穗发芽指数(SI),穗发芽率(SR),籽粒发芽指数(GI)和α-淀粉酶活性(AA)进行了测定和分析,发现它们均受基因型×栽培地点的极显著影响,且四个参数之间具有一定相关性。GI 参数由于其变异系数较低,在不同栽培地点稳定性好,且操作简便,是较可靠和理想的穗发芽评价参数。SI 参数可作为辅助,区别籽粒休眠性相似的材料(基因型)或全面评价材料(基因型)的穗发芽抗性特征。AA 参数稳定性较差,并且检测方法复杂,因此不建议在育种及大量材料筛选和评价时使用。此外,青稞穗发芽抗性受环境影响较大,评价时应考虑到尽可能多的抗性影响因素及其在不同栽培条件下的变异。 2. 对来自青藏高原的青稞穗发芽抗性特征及其与其它农艺性状间的关系进行研究。通过测定穗发芽指数(SI)、籽粒发芽指数(GI)和α-淀粉酶活性(AA),表明113 份青稞材料的穗发芽抗性具有显著差异。SI、GI 和AA 参数的变幅分别为1.00~8.86、0.01~0.97 和0.00~2.76,其均值分别为4.72、0.63 和1.22。根据SI 参数,六个基因型,包括‘XQ9-5’,‘XQ33-9’,‘XQ37-5’,‘XQ42-9’,‘XQ45-7’和‘JCL’被鉴定为抗性品种。综合SI、GI 和AA 参数,可以发现青稞的穗发芽抗性机制包含颖壳等穗部结构的抗性和种子自身的抗性(即种子休眠性),且供试材料中未发现较强的胚休眠品种,除‘XQ45-7’外,所有品种在发芽第四天均能检测出α-淀粉酶活性。穗部结构和种子休眠的抗性机制因基因型不同而不同,在穗发芽抗性中可单独作用或共同作用。农家品种和西藏群体分别比栽培品种和四川群体的穗发芽抗性强,而在不同籽粒颜色的青稞中未发现明显差异。相关性检验发现,青稞的穗发芽抗性,主要是种子休眠性,与百粒重、开花期、成熟期、穗长、芒长和剑叶长呈显著负相关关系,与株高相关性不显著。农艺性状可以作为穗发芽抗性材料选育中的辅助指标。本试验为青稞穗发芽抗性育种研究提供了必要的理论基础和可供使用的亲本材料。 3. α-淀粉酶是由多基因家族编码的蛋白质,在植物种子萌发时高度表达,与植物种子的萌发能力密切相关。在大麦种子发芽时,高等电点α-淀粉酶的活性远大于低等电点的α-淀粉酶。为了研究不同穗发芽抗性青稞品种中编码高等电点α-淀粉酶Amy1 基因结构与抗性间的关系,我们以筛选得到的抗性品种‘XQ32-5’(TR1)、‘XQ37-5’(TR2)、‘XQ45-7’(TR3),易感品种‘97-15’(TS1)、‘9657’(TS2)以及强休眠大麦品种‘SAMSON’(SAM)为材料,对其Amy1 基因的编码区序列进行克隆和结构分析,并对它们推导的氨基酸序列进行比较。结果显示,青稞Amy1 基因具有三个外显子、两个内含子,编码区中有13 个核苷酸变异位点,均位于2、3 号外显子,2 个变异位点位于2 号外显子。SAM 和TS1 分别在2 号外显子相应位置有5 个相同的碱基(GAACT)的插入片段。相应α-淀粉酶氨基酸序列推导发现,所有核苷酸变异中有8 个导致相应氨基酸残基的改变,其余位点为同义突变。青稞Amy1 基因编码区序列品种间相似度高达99%以上,部分序列变异可能与其穗发芽抗性有关。随后,我们又通过SYBR Green 荧光定量技术对该基因在不同发芽时间(1d~7d)的相对表达水平进行了差异性检测。结果发现,7 天内不能检测到SAM 的Amy1 基因表达,5 个青稞品种间的Amy1 基因的相对表达量均随着发芽时间延长而上升,但上升方式有所不同。弱抗品种该基因表达更早,转录本增加速率更大,且在4~5 天可达到平台期。发芽7 天中,抗性品种总转录水平明显低于易感品种。本研究结果表明,青稞Amy1 基因的转录水平是与其穗发芽抗性高度相关。 我国青藏高原青稞,尤其是农家品种的穗发芽抗性具有丰富的变异,蕴藏着穗发芽抗性育种的宝贵资源。本研究为青稞穗发芽抗性育种建立了合理抗性评价体系,筛选出可供育种使用的特殊材料,阐明了农艺性状可辅助穗发芽抗性育种,同时还对穗发芽抗性与α-淀粉酶基因的结构和表达关系进行分析,为青稞穗发芽抗性资源筛选奠定了基础。 Preharvest sprouting (PHS) is a serious problem in crop production. It often takes place when encountering damp, cold conditions at harvest time and results in the decrease of grain quality and great loss of yield by triggering the synthesis of endosperm degrading enzymes (mostly the α-amylase). Therefore, PHS is regarded as an important criterion for crop breeding. In order to minimize the risk of PHS, resistant genotypes are highly required. Hulless barley (Hordeum vulgare ssp. vulgare) is the staple food crop in Qinghai-Tibetan Plateau from of old, where is one of the origin and genetic diversity centers of hulless barley. Recently, interest in hulless barley has been sparked throughout the world due to the demonstrations of its great potential in health food industry and fuel alcohol production. Indeed, hulless barley can also be utilized to produce good quality malt if the appropriate malting conditions are used. In China, overcast and rainy conditions often occur at maturity of hulless barley and cause an adverse on its production and application. PHS resistant genotypes, therefore, are highly required for the hulless barley breeding programs. However, few investigations have been made so far on this issue. The objectives of this study were: 1) to assessment of methods used in testing preharvest sprouting resistance in hulless barley; 2) to evaluate the variability and characteristics of PHS resistance of hulless barley from Qinghai-Tibet Plateau in China; 3) to select potential parents for PHS resistance breeding; 4) to primarily study on the molecular mechanism of PHS resistance of hulless barley. Our results are as followed: 1. We investigated the temperature effects on seed germination and seed dormancy expression of hulless barley, discussed appropriate temperature range for screening of PHS resistant varieties, and analyzed the mechanism of seed dormancy expression of hulless barley. The dormancy level of 13 hulless barley were evaluated by GI (germination index) values calculating by seed germination tests at temperature of 10,15,20,25,30℃ in darkness. There were great differences in temperature sensitivity among these accessions. The insensitive accessions showed low dormancy at any temperature while the dormancy expression of sensitive accessions could be restrained by low temperature and induced by high temperature. The temperature range of 15℃ to 25℃ was workable for estimating of dormancy level of hulless barley according to our data. Analysis of α-amylase activity showed that the temperature effects on seed germination and the expression of seed dormancy be achieved probable via regulating of α-amylase activity. Furthermore, we evaluated the differences in sprouting index (SI), sprouting rate (SR), germination index (GI) and α-amylase activity (AA) between Maerkang and Chengdu among 34 accessions of hulless barley from Qinghai-Tibetan Plateau in China. These PHS sprouting parameters were significantly affected by accession×location, and they had correlation between each other. GI was the most reliable parameter because of its low CV value, good repeatability and simple operation. SI could assist in differentiating between accessions of similar dormancy or overall evaluation of the resistance. AA was bad in repeatability and had relatively complex testing method, therefore, not appropriate for breeding and evaluation and screening of PHS resistant materials. Besides, since PHS resistance of hulless barley was greatly influenced by its growth environment, possibly much influencing factors and variations between cultivated conditions should be considered. 2. In this study, large variation was found among 113 genotypes of hulless barley (Hordeum vulgare ssp.vulgare) from Qinghai-Tibetan Plateau in China, based on the sprouting index (SI), germination index (GI) and α-amylase activity (AA) which derived from sprouting test of intact spikes, germination test of threshed seeds and determination of α-amylase activity, respectively. The range of SI, GI and AA was 1.00~8.86, 0.01~0.97 and 0.00~2.76,the mean was 4.72, 0.63 and 1.22 espectively. Six resistant genotypes, including ‘XQ9-5’, ‘XQ33-9’, ‘XQ37-5’, ‘XQ42-9’, ‘XQ45-7’ and ‘JCL’, were identified based on SI. Integrating the three parameters, it was clear that both hulls and seeds involved in PHS resistance in intact spikes of hulless barley and there was no long-existent embryo dormancy found among the test genotypes. All the genotypes, except ‘XQ45-7’, had detectable α-amylase activity on the 4th day after germination. There was PHS resistance imposed by the hull and seed per se and the two factors can act together or independent of each other. Besides, landraces or Tibet hulless barley had a wider variation and relatively more PHS resistance when compared with cultivars or Sichuan hulless barley. No significant difference was found among hulless barley of different seed colors. The correlation analysis showed PHS resistance was negatively related to hundred grain weight, days to flowering, days to maturity, spike length, awn length and flag length but not related to plant height. This study provides essential information and several donor parents for breeding of resistance to PHS. 3. Alpha-amylase isozymes are encoded by a family of multigenes. They highly express in germinating seeds and is closely related to seed germination ability. In barley germinating seeds, the activity of high pI α-amylase is much higher than low pI α-amylase. The aim of this study was to determine the relationship between preharvest sprouting resistance of hulless barley and the gene structure of Amy1 gene which encodes high pI α-amylase. The coding region and cDNA of Amy1 gene of three resistant accessions, including ‘XQ32-5’ (TR1), ‘XQ37-5’ (TR2), ‘XQ45-7’ (TR3), two susceptible accessions ‘97-15’ (TS1), ‘9657’ (TS2) and one highly dormant barley accession ‘SAMSON’ (SAM) was cloned. Analysis of their DNA sequences revealed there were three exons and two introns in Amy1 gene. Thirteen variable sites were in exon2 and exon3, 2 variable sites were in intron2. SAM and TS1 had a GAACT insert segment in the same site in intron2. Only 8 variable sites caused the change of amino acid residues. There were 99% of similarity between the tested hulless barley and some of the variable sites might be related with preharvest sprouting resistance. Then, we investigated the expression level of Amy1 gene in the 7-day germination test. Results of quantitative real-time PCR indicated that the relative expression trends of Amy1 gene were the same but had significant differences in the increase fashion between hulless barleys and no detectable expression was found in SAM. Susceptible accessions had earlier expression and faster increase and reached the maximum on day 4 ~ day 5. Besides, total transcripts level was found lower in resistant accessions than susceptible accessions. This study indicated that α-amylase activity was highly related to the transcription level of Amy1 gene which not correlated to missense mutation sites. In conclusion, hulless barley, especially the landraces from Qinghai-Tibetan Plateau in China possesses high degree of variation in PHS performance, which indicates the potential of Tibetan hulless barley as a good source for breeding of resistance to PHS. This study provides several donor parents for breeding of resistance to PHS. Our results also demonstrate that agronomic traits may be used as assistants for PHS resistance selection in hulless barley. Besides, analysis of high pI α-amylase coding gene Amy1 revealed the relative high expression of was Amy1 one of the mainly reason of different PHS resistance level in hulless barley.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本研究应用微波消解ICP-AES 法对62 个小麦品种及3 个地区土壤的锌铁硒含量进行了分析测定,发现不同小麦品种中微量元素含量差异很大,姊妹系间也存在差异。含铁量最高与最低的小麦品种铁含量相差29.68mg/kg。含锌量最高与最低的小麦品种锌含量相差46.70 mg/kg。含硒量最高与最低的小麦品种硒含量相差0.056 mg/kg。对不同地点的小麦及土壤中锌铁硒含量进行方差分析,发现双流和西昌两地种植小麦的铁含量和硒含量均有显著差异,西昌和荣县种植的锌含量有显著差异。在3 个地点中双流种植小麦硒含量最高,西昌种植小麦的铁和锌含量最高。 通过对小麦微量元素含量与土壤中微量元素含量进行了相关性分析,结果表明:小麦中的锌铁含量与土壤中的锌铁含量呈显著正相关,土壤中铁与锌含量呈极显著正相关,小麦中铁与锌含量也呈极显著正相关。随着土壤微量元素锌铁的提高,小麦中的锌铁元素含量同时提高,而且小麦对两种元素的吸收互相促进。土壤中的硒含量与锌铁含量呈负相关。小麦中硒含量也与锌铁含量也呈负相关。说明锌和铁与硒互相拮抗。小麦硒含量与土壤硒含量呈正相关,但不显著。表明土壤硒含量可以影响小麦硒含量,但不是决定因素,小麦硒含量与小麦自身因素有关。 对姊妹系G290(高硒含量)和G289(低硒含量)进行抗重金属胁迫和抗旱性实验发现,高硒品种G290的抗逆性优于低硒品种G289。 利用RAPD 技术对7 个姊妹系进行遗传差异分析发现,高硒材料G290出现了特异条带,分别标为1、2、3、4,其他姊妹系品种中未发现特异条带,回收4 条特异条带并连接转化,得到目的片段1、2、3 的重组子,进行测序。NCBI 中结果显示没有找到植物中的同源序列,说明特异序列可能是未发现的基因片段,推测可能与小麦硒含量有关,有待进一步研究。 以上研究结果,对小麦营养研究及功能性小麦的筛选和栽培具有指导作用。 In this study, we determinated the contents of zinc, iron, selenium in 62 wheat cultivars and soil samples of three regions by method of microwave digestion/ ICPAES,found that there was great difference of zinc, iron, selenium contents in different wheat cultivars as well as different sister lines. Iron content difference was 29.68 mg/kg between the highest-iron-content cultivar and the lowest one, and zinc content difference was 46.70 mg/kg , selenium content difference was 0.056 mg/kg. Anova analysis was made on contents of zinc, iron, selenium in wheat and soil samples of different locations, significant differences of Fe and Se contents were found between wheat in Shuangliu and Xichang, significant difference of Zn content was found between wheat in Xichang and Rongxian. Se content in wheat of Shuangliu was highest, Fe and Zn contents in wheat of Xichang were highest. Relativity analysis was made on three trace elements in Wheat and in soil, the result showed that there was significant positive correlation of zinc, iron content between in Wheat and in soil, as well as between Fe and Zn both in wheat and in soil. With the improving of Zn, Fe contents in soil, contents of Zn and Fe in wheat increased and absorption of Zn and Fe in wheat will mutual promote. Negative correlation of Se and Zn contents was found in wheat and soil, but not significant, that meant the antagonism of Se and Zn. Positive correlation of Se content in wheat and soil was found. High selenium content G290 and low selenium content G289 in sister lines were selected for heavy metal stress and drought resistance experiments, the result showed that the resistance of high-selenium-content cultivar was better than low selenium one. Analysis on genetic difference was made by RAPD, and specific bands were selected, marked 1,2,3,4, no more specific bands were found in other sister lines.4 bands were recovered, ligated to T-vector and transformed E.coli. Three recombinant plasmids were obtained and sequenced. NCBI Blast showed there was no homology with other plants. It implied that these fragments probably be new genes and maybe were related to selenium in wheat. It needs further research. This paper would be useful for the study of wheat nutrition as well as selection and cultivation of functional wheat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

青稞(Hordeum vulgare L.var.nudum Hook.f.),即裸大麦,是兼食用、饲用和酿造于一体的作物,有着重要的利用价值。淀粉是青稞籽粒中含量最多、最重要的碳水化合物,淀粉含量、直支淀粉比将会直接影响淀粉的功能特性,进而影响淀粉的应用领域。我国青藏高原青稞的栽培和食用历史悠久,特色青稞资源极其丰富。目前关于青藏高原青稞淀粉特性的报道还不多见,筛选和培育特色淀粉青稞利于拓展青稞的应用领域, 从而提高其经济价值。 本研究以114份青藏高原青稞品种(系)为实验材料,通过SDS-PAGE对材料的胚乳淀粉颗粒结合蛋白(SGAPs)进行分离,确定各蛋白的分子量大小、组合类型和多态性等。然后按照国标法测试材料的籽粒总淀粉含量和直链淀粉含量,通过微型糊化粘度仪分析相应的淀粉糊化特性,最后使用显微镜观察比较了青稞的淀粉颗粒形态特征。主要结果如下: 1、114种青稞中共分离出20种不同的SGAP条带,条带分子量为35.00~112.39 KDa,分布频率为12.28~97.37%。材料含有的SGAPs条带数从10到14不等,超过一半的材料含11种SGAP条带。20种条带形成16种组合类型,其中西藏地区青稞包含所有16个组合类型,四川地区青稞包含其中12个组合类型。青藏高原青稞籽粒淀粉颗粒结合蛋白的差异很大,遗传多样性丰富。 2、114份青稞的总淀粉含量、直链淀粉含量、直支淀粉比、峰值粘度、糊化温度和峰值温度的变幅分别为51.26~66.70%、14.64~29.74%、0.17~0.42、194~1135BU、58.8~65.2℃和81.4~92.4℃,相应的平均值分别为59.82%、23.60%、0.31、722.30BU、62.1℃和88.8℃。群体在总淀粉含量、直链淀粉含量、直支淀粉比、峰值粘度、糊化温度和峰值温度上的分布具有明显的正态性;所有胚乳淀粉体的淀粉粒都呈复粒结构。对西藏和四川的材料进行了分组比较, 两地区的青稞在直链淀粉含量和直支淀粉比上的差异达到显著水平。 3、筛选出18份具有特殊淀粉特性的青稞品种,其中5份材料的总淀粉含量超过65%,包括NB63-1、NB67、甘孜白六棱、98221-1和NB63;3份材料的直链淀粉含量大于29%,包括藏青85、藏青3号和喜马拉6号;8份材料的直支淀粉比小于0.25,包括99033-6、春青稞、阿坝330、Jan-03、米麦114、396、NB63-1和92013;7份材料的糊化温度低于60℃,同时材料的峰值粘度大于1000BU,并且峰值温度低于90℃,包括足捉春、Jan-03、阿坝330、米麦114、春青稞、20003和阿青5号。 4、各淀粉特性间存在高度相关性。直链淀粉含量和直支淀粉比与糊化温度成极显著正相关,与峰值粘度成极显著负相关,与A型淀粉粒数量和大小呈负相关。不同SGAPs组合的品种之间,淀粉含量和淀粉糊化特性间差异均达显著水平。SGAP2、SGAP5、SGAP6和SGAP7可能对籽粒直链淀粉含量、直支淀粉比和糊化温度有正向效应;SGAP3、SGAP9∼SGAP20可能对峰值粘度有正向效应。 本研究对青藏高原青稞淀粉资源进行了较为全面的评价,对该区青稞淀粉特性有了系统的认识。研究筛选出的特殊青稞品种可作为青稞育种和青稞淀粉工业应用的潜在资源,淀粉特性差异巨大的众多青稞品种也为拓宽青稞应用领域提供了丰富的资源保障。本研究对部分SGAPs在性质上的鉴定和功能上的初步推断为青稞材料的筛选提供了指导,也为品质育种提供了理论参考。 Hulless barley (naked barley, Hordeum vulgare L.) is a short- season, early maturing crop with a wide range of adaptation. It has been attracting more and more attention due to its superior nutrition and extensive industrial applications. Starch is the main ingredient in hulless barley seeds which makes up 65 percent of hulless barley’s dry weight. The ratio of the amylose/amylopectin and the size, shape, distribution of starch granules can affect the physico-chemical and functional properties of starch, which may turn affect its utilizations. The Qinghai-Tibet Plateau, which is located in southwestern China, is a typical area of vertical agricultural ecosystem and one of the barley origin centers with abundant hulless barley resources. There are little reports about hulless barley in Qinghai-Tibet Plateau at present. To screen and cultivate some characteristic hulless barley can improve its value. An improved SDS-PAGE was used to identify SGAPs combination of 114 hulless barley varieties. Starch content (total starch and amylose starch) was determined according to the standard methods GB5006-85 and GB/T 15683 using PerkinElmer M341 Precision Automatic Polarimeter and UV spectrophotometer 755B respectively. The pasting properties were measured by BRABENDER Micrio Visco-Amylo- Graph 803201. The morphology of starch granules were observed and compared with Axioplan 2 Imaging light microscopy. The following were the results obtained: 1. There were 20 major SGAPs presented in 114 varieties, with the molecular weight ranged from 35.00 to 112.39 KDa, and the frequencies ranged from 12.28% to 97.37%. The number of SGAP bands in each accession varied from 10 to 14, more than half of the population had 11 bands. There were 16 distinct SGAP patterns in the 114 varieties, the Tibet hulless barley had all of the 16 types and the Sichuan hulless barley had 12 types. The results indicated the Qinghai-Tibet Plateau hulless barley had a polymorphism of the SGAPs. 2. The ranges of the total starch content, amylose content, Am/Ap, peak viscosity, pasting temperature and peak temperature of the 114 hulless barley were 51.26~66.70%,14.64~29.74%,0.17~0.42,194~1135BU,58.8~65.2 and 81.4℃~92.4, with an average of ℃59.82%, 23.60%, 0.31, 722.30BU, 62.1 and 88.8,℃℃ respectively. The distributions of the total starch content, amylose content, Am/Ap, peak viscosity, pasting temperature and peak temperature were visibly normal school. All of the amyloplasts in endosperm of varieties showed bimodal size distributions.The main starch properties of hulless barley from Tibet and Sichuan were separated and compared, the differences on amylose content and Am/Ap were obvious. 3. Eighteen accessions which had special starch properties were screened out. Five accessions with total starch content beyond 65%, including NB63-1, NB67, Ganzibailiuleng, 98221-1 and NB63; three accessions, Zangqing85, Zangqing3 and Ximala6, with the highest amylose content (>29%); five accessions with Am/Ap less than 0.25, including 99033-6, Chun Qingke, A Ba 330, Jan-03, Mi Mai114, 396, NB63-1 and 92013; seven accessions had a pasting temperature under 60, ℃meanwhile their peak viscosity beyond 1000BU and their peak temperature under 90℃,including Zu Cuochun, Jan-03, A Ba 330, Mi Mai 114, Chun Qingke, 20003 and A Qing 5. 4. There were high correlations between starch properties. Amylose content and Am/Ap were positively correlated to pasting temperature, negatively correlated to peak viscosity, negatively correlated to the number and granule size of A-type granule. Different SGAP combinations caused significant diversities in starch content and pasting properties. SGAP2, SGAP5, SGAP6 and SGAP7 may have positive effect on amylose content, Am/Ap and pasting temperature; SGAP3, SGAP9∼SGAP20 may have positive effect on peak viscosity. Our research made a comprehensive evaluation on the hulless barley starch from the Qinghai-Tibet Plateau, we can get a systemic understanding. Some special accessions were screened out can be used on the hulless barley breeding lines and industries utilization.The combination of the SGAPs may become a criterion to evaluate the hulless barley endosperm starch quality. Consequently, the results will be good information for further studies on the hulless barley.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

通过秋水仙素诱导获得同源四倍体水稻10个株系,包括6个恢复系、3个保持系和1个不育系,这些株系具有加倍的染色体组。田间观察表明10个株系具有特殊的农艺性状:茎杆变粗壮、植株颜色加深、叶片变厚、叶宽适度增加、分蘖数减少、有效分蘖的比率下降等。根尖有丝分裂鉴定表明,同源四倍体水稻10个株系具有正常的有丝分裂,观察细胞的染色体数目皆为2n=48。花粉母细胞减数分裂鉴定表明10个株系具有比较理想的减数分裂行为,后期I染色体滞后、末期I微核生成和末期II异常小孢子比率较低,能较好的完成减数分裂过程,其中后期I染色体滞后比率约为10%-20%,末期I微核生成比率约为1%-6%,末期II异常小孢子比率约为1%-8%。这提示,染色体联合和分离不规则导致三价体、单价体 和落后染色体等产生,并进一步导致在后期和末期不均横分离产生异常小孢子,这可能是同源四倍体株系结实率不高的原因之一。 同源四倍体水稻正常胚囊为蓼型,变异胚囊具有多种类型,其比率显著高于二倍体对照,变化范围为39.62%-69.85%。按变异胚囊的结构特点和形成方式,分为四种类型:退化型,结构变异型,无融合生殖型和反足细胞增殖型。退化型胚囊的平均比率为29.17%,包括小胚囊(15.04%)和完全退化胚囊(14.13%),前者仍有较小胚囊腔而后者胚囊腔缺失。结构变异胚囊包括结构缺失、结构重复和位置异常,反映了蓼型胚囊八核七细胞结构的变异,其在各株系的平均比率为18.96%。无融合生殖胚囊发生比率极低,平均比率为1.77%,类型包括反足胚和卵细胞胚。反足细胞增殖胚囊是反足细胞团频繁增殖形成,伴随上述三种变异发生使异常胚囊的多样性进一步增加,其在各株系的平均比率为10.62%。相关分析表明,同源四倍体水稻结实可能主要来自三部分:正常胚囊、正常型小胚囊和反足细胞增殖型胚囊。这三种胚囊具有相对完整的蓼型结构,可能具有较好的育性,其对结实率的贡献程度估计值分别为72.44%、15.12%、12.44%。此外,完全退化型胚囊和位置异常型胚囊对结实率分别表现出显著(-0.66)和极显著(-0.92)的负相关,这表明二者可能是结实性的抑制因素。 Ten autotetraploid strains, which include six restoring lines, three maintaining lines and a sterile line, are derived from artificial induction by colchicine treatments. Variations of agronomical traits are observed which include large organs, sturdy plants, long panicle length and deep leaf color and so on. It has been confirmed that autotetraploid strains exhibit normal chromosome behaviors in mitosis and the chromosome numbers are all 48. Moreover, abnormal chromosome behaviors are investigated in meiosis including univalent, trivalent, quatrivalent, chromosome lagging and microkernel and so on. It evaluates that the percentage of chromosome lagging in anaphase I is about 10%-20%, the percentage of microkernel in telophase I is about 1%-6% and the percentage of abnormal microspore in telophase II is about 1%-8%. In all, abnormal behaviors of chromosomes could induce univalent, trivalent and et al. and subsequently induce infertile microspore. That may be one of the causes of low seed sets in autotetraploid strains. Embryo sacs of autotetraploid strains are formed according to the Polygonum type. However, these strains exhibit variations of abnormal embryo sacs at high frequencies (39.62% - 69.85%). The variations are frequently involved in the spikelets of the main panicles and the first tillers, leading to obvious decreases of the percentages of normal embryo sacs among the strains. Four types of abnormal embryo sacs are classified basing on their different structures and origins: degenerated embryo sac (DES), structure variation (SV), apomixis (Apo) and antipodal cell proliferation (ACP). Embryo sacs of DES (29.17%) exhibit small embryo sacs (15.04%) or no embryo sac (14.13%), the former showing embryo sacs with decreased size and the latter showing no sac. Embryo sacs of AS (18.96%) include three subtypes: structure deletion, structure duplication and location variation, which suggests abnormalities of the eight nuclei, seven celled pattern of the Polygonum type. Embryo sacs of Apo (only 1.77%) include two origins of apomictic embryos: antipodal embryo and egg embryo. Embryo sacs of ACP are observed frequently (10.62%) in autotetraploid strains which subsequently increase the variations of abnormal embryo sacs. It evaluates by the Pearson’s correlation analysis that seed set is probably contributed by three origins of embryo sacs: normal embryo sacs, small embryo sacs (normal pattern) and embryo sacs of ACP. These three origins exhibit comparatively good structure of the Polygonum type and could account for seed set at a percentage of 72.44%, 15.12%, 12.44%, respectively. Moreover, the subtype of no embryo sac (NES) negatively related to seed set at the P>0.01 level (-0.92) and the subtype of location variation (LV) negatively related to seed set at the P>0.05 level (-0.66). Which suggest the two subtypes may have strong stress on seed set.