853 resultados para 3D Geometry
Resumo:
Using variational and numerical solutions we show that stationary negative-energy localized (normalizable) bound states can appear in the three-dimensional nonlinear Schrodinger equation with a finite square-well potential for a range of nonlinearity parameters. Below a critical attractive nonlinearity, the system becomes unstable and experiences collapse. Above a limiting repulsive nonlinearity, the system becomes highly repulsive and cannot be bound. The system also allows nonnormalizable states of infinite norm at positive energies in the continuum. The normalizable negative-energy bound states could be created in BECs and studied in the laboratory with present knowhow.
Resumo:
Nonlinear oscillations of a 3D radial symmetric Bose-Einstein condensate under periodic variation in time of the atomic scattering length have been studied. The time-dependent variational approach is used for the analysis of the characteristics of nonlinear resonances in the oscillations of the condensate. The bistability in oscillations of the BEC width is investigated. The dependence of the BEC collapse threshold on the drive amplitude and parameters of the condensate and trap is found. Predictions of the theory are confirmed by numerical simulations of the full Gross-Pitaevskii equation.
Resumo:
In this communication, we report results of three-dimensional hydrodynamic computations, by using equations of state with a critical end Point as suggested by the lattice QCD. Some of the results are an increase of the multiplicity in the mid-rapidity region and a larger elliptic-flow parameter nu(2). We discuss also the effcts of the initial-condition fluctuations and the continuous emission.
Resumo:
The Dirac field is studied in a Lyra space-time background by means of the classical Schwinger Variational Principle. We obtain the equations of motion, establish the conservation laws, and get a scale relation relating the energy-momentum and spin tensors. Such scale relation is an intrinsic property for matter fields in Lyra background.
Resumo:
As an application of the new realistic three-dimensional (3D) formalism reported recently for three-nucleon (3N) bound states, an attempt is made to study the effect of three-nucleon forces (3NFs) in triton binding energy in a non partial wave (PW) approach. The spin-isospin dependent 3N Faddeev integral equations with the inclusion of 3NFs, which are formulated as function of vector Jacobi momenta, specifically the magnitudes of the momenta and the angle between them, are solved with Bonn-B and Tucson-Melbourne NN and 3N forces in operator forms which can be incorporated in our 3D formalism. The comparison with numerical results in both, novel 3D and standard PW schemes, shows that non PW calculations avoid the very involved angular momentum algebra occurring for the permutations and transformations and it is more efficient and less cumbersome for considering the 3NF.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Husserl left many unpublished drafts explaining (or trying to) his views on spatial representation and geometry, such as, particularly, those collected in the second part of Studien zur Arithmetik und Geometrie (Hua XXI), but no completely articulate work on the subject. In this paper, I put forward an interpretation of what those views might have been. Husserl, I claim, distinguished among different conceptions of space, the space of perception (constituted from sensorial data by intentionally motivated psychic functions), that of physical geometry (or idealized perceptual space), the space of the mathematical science of physical nature (in which science, not only raw perception has a word) and the abstract spaces of mathematics (free creations of the mathematical mind), each of them with its peculiar geometrical structure. Perceptual space is proto-Euclidean and the space of physical geometry Euclidean, but mathematical physics, Husserl allowed, may find it convenient to represent physical space with a non-Euclidean structure. Mathematical spaces, on their turn, can be endowed, he thinks, with any geometry mathematicians may find interesting. Many other related questions are addressed here, in particular those concerning the a priori or a posteriori character of the many geometric features of perceptual space (bearing in mind that there are at least two different notions of a priori in Husserl, which we may call the conceptual and the transcendental a priori). I conclude with an overview of Weyl's ideas on the matter, since his philosophical conceptions are often traceable back to his former master, Husserl.
Resumo:
Este trabalho mostra os resultados obtidos com ensaios geofísicos realizados em uma área contaminada por hidrocarboneto no Polo Industrial de Cubatão - São Paulo, com objetivo de caracterizar as anomalias geoelétricas associadas à presença dos hidrocarbonetos, bem como delimitar e cubar tais anomalias. Para tanto, utilizou-se o método da eletrorresistividade, por meio das técnicas de Sondagem Elétrica Vertical (SEV) e Imageamento Elétrico 3D. Os resultados obtidos permitem indicar que a presença de hidrocarboneto está associada a anomalias condutivas devido aos produtos da biodegradação. As anomalias condutivas ocorrem de forma disseminada na área, totalizando um volume de 1365,3 m³; entretanto, este volume corresponde somente à presença de contaminante em fase residual.
Resumo:
Recent studies have demonstrated that the sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field. In this paper, a two-dimensional computer simulation of a magnetic-field-enhanced PHI system is described. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded vacuum chamber filled with uniform molecular nitrogen plasma. A static magnetic field is created by a small coil installed inside the target holder. The vacuum chamber is filled with background nitrogen gas to form a plasma in which collisions of electrons and neutrals are simulated by the Monte Carlo algorithm. It is found that a high-density plasma is formed around the target due to the intense background gas ionization by the magnetized electrons drifting in the crossed E x B fields. The effect of the magnetic field intensity, the target bias, and the gas pressure on the sheath dynamics and implantation current of the PHI system is investigated.
Resumo:
Within the approach of supersymmetric quantum mechanics associated with the variational method a recipe to construct the superpotential of three-dimensional confined potentials in general is proposed. To illustrate the construction, the energies of the harmonic oscillator and the Hulthen potential, both confined in three dimensions are evaluated. Comparison with the corresponding results of other approximative and exact numerical results is presented. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We use the framework of noncommutative geometry to define a discrete model for fluctuating geometry. Instead of considering ordinary geometry and its metric fluctuations, we consider generalized geometries where topology and dimension can also fluctuate. The model describes the geometry of spaces with a countable number n of points. The spectral principle of Connes and Chamseddine is used to define dynamics. We show that this simple model has two phases. The expectation value
Resumo:
The reaction of Cu(NO3)(2).3H(2)O with 1,3-propanediamine (pn), in the presence of NaN3, afforded a 1:1 co-crystal formed by [Cu(NO3)(2)(pn)(2)] and [Cu(N-3)(NO3)(pn)(2)] (1 and 2), which were characterized by elemental analysis, IR spectroscopy and single crystal X-ray diffraction. In both compounds, the copper(II) centers are in a distorted octahedral environment, formed by four N atoms of two bidentate pn ligands in the basal plane, whereas the axial bonds are formed by two O atoms from the nitrate ligands in 1 and one O atom from the nitrate ligand and one N atom from the azide ion in 2. The asymmetric unit of the crystal consists of two crystallographically independent 1 and 2 complexes, which are held together in a 3D network by a series of N - H center dot center dot center dot O and N - H center dot center dot center dot N hydrogen bonds, as well C - H center dot center dot center dot O interactions. New supramolecular synthons are identified by the occurrence of two geometrically distinct molecular recognition patterns involving the NO3- ion and amino groups from pn ligands.