980 resultados para 299901 Agricultural Engineering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tunable charge-trapping behaviors including unipolar charge trapping of one type of charge carrier and ambipolar trapping of both electrons and holes in a complementary manner is highly desirable for low power consumption multibit flash memory design. Here, we adopt a strategy of tuning the Fermi level of reduced graphene oxide (rGO) through self-assembled monolayer (SAM) functionalization and form p-type and n-type doped rGO with a wide range of manipulation on work function. The functionalized rGO can act as charge-trapping layer in ambipolar flash memories, and a dramatic transition of charging behavior from unipolar trapping of electrons to ambipolar trapping and eventually to unipolar trapping of holes was achieved. Adjustable hole/electron injection barriers induce controllable Vth shift in the memory transistor after programming operation. Finally, we transfer the ambipolar memory on flexible substrates and study their charge-trapping properties at various bending cycles. The SAM-functionalized rGO can be a promising candidate for next-generation nonvolatile memories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Articular cartilage is a highly organized tissue with cellular and matrix properties that vary with depth zones. Regenerating this zonal organization has proven difficult in tissue-engineered cartilage to treat damaged cartilage. In this thesis, we evaluated the effects of culture environments that mimic aspects of the native cartilage environment on chondrocyte subpopulations. We found that decellularized cartilage matrix can improve zonal tissue-engineered cartilage. Also, chondrocytes respond to signals from bone cells and compressive stimulation in a zone-dependent manner. These results highlight the importance of a zone-specific environment to improve tissue-engineered cartilage in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Historically, science had a place in education before the time of Plato and Aristotle (e.g., Stonehenge). Technology gradually increased since early human inventions (e.g., indigenous tools and weapons), rose up dramatically through the industrial revolution and escalated exponentially during the twentieth and twenty-first centuries, particularly with the advent of the Internet. Engineering accomplishments were evident in the constructs of early civil works, including roads and structural feats such as the Egyptian pyramids. Mathematics was not as clearly defined BC (Seeds 2010), but was utilized for more than two millennia (e.g., Archimedes, Kepler, and Newton) and paved its way into education as an essential scientific tool and a way of discovering new possibilities. Hence, combining science, technology, engineering, and mathematics (STEM) areas should not come as a surprise but rather as a unique way of packaging what has been ..."--Publisher Website

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The drying of grapes is a more complex process compared to the dehydration of other agricultural materials due to the necessity of a pretreatment operation prior to drying. Grape drying to produce raisins is a very slow process, due to the peculiar structure of grape peel, that is covered by a waxy layer.Its removal has benn so far carried out by using several chemical pre-treatments. However, they cause heterogeneity in the waxes removal and create microscopic cracks. In this paper an abrasive pretreatment for enhancing the drying rate and preserving the grape samples is proposed. Two cultivars of grape were investigated: Regina white grape and Red Globe red grape. The drying kinetics of untreated and treated samples were studied using a convective oven at 50 C. Fruit quality parameters such as sugar and organic acid contents, shrinkage, texture, peel damage (i.e. by SEM analysis) and rehydration capacity were studied to evaluate the effectiveness of abrasive pretreatment on raisins. Abrasive pretreatment contributed to reduce drying time and rehydration time. The treated and untreated dried grapes were significantly different (p<0.05) in sugar and in tartaric acid content. On the contrary, no significant differences (p<0.05) in malic and citric acids in texture peoperties between untreated and treated samples were observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tertiary institutions now face serious challenges. Modern industry requires engineering graduates with strong knowledge of modern technologies, highly practical focus, management skills, ability to work individually and in a team, understanding of environmental issues and many other skills and graduate attributes. Institutions in the tertiary sector change courses and modify curriculum to reflect challenges of the modern industry and make engineering graduates better prepared for the “real world”. Queensland University of Technology in the recent years introduced an innovative structure of engineering courses with a common core for Bachelor of Engineering Mechanical, Infomechatronics and Medical, where manufacturing is taught in conjunction with engineering design and engineering materials. In this paper we discuss the innovative curriculum structure, teaching and learning approaches of coherent delivery of manufacturing in conjunction with engineering design and

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an industry worth more than €500 billion annually, producing more than 80 million vehicles worldwide each year and consisting of over 50 major manufacturers worldwide, the automotive industry represents a lucrative but highly competitive manufacturing industry (Deloitte, 2009a; European Automobile Manufacturers Association, 2012). With sales falling in Europe in 2013 for the sixth consecutive year (Boston and Curtin, 2014), automotive manufacturers are increasingly turning to new strategies to retain their share of sales in a contracting market. Some strategies have focused on the industry approach to manufacturing, namely, a technically focused push for a build-toorder process rather than the current build-to-stock approach in order to reduce overall value-chain costs and to increase efficiency (Parry and Roehrich, 2013, p. 13). However, others stress a more customer-orientated approach, striving to develop products that meet customer requirements (Oliver Wyman Group, 2007).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanotubes and nanosheets are low-dimensional nanomaterials with unique properties that can be exploited for numerous applications. This book offers a complete overview of their structure, properties, development, modeling approaches, and practical use. It focuses attention on boron nitride (BN) nanotubes, which have had major interest given their special high-temperature properties, as well as graphene nanosheets, BN nanosheets, and metal oxide nanosheets. Key topics include surface functionalization of nanotubes for composite applications, wetting property changes for biocompatible environments, and graphene for energy storage applications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation for the removal of agricultural pollutants, imazaquin and atrazine was conducted using montmorillonite (MMT) exchanged with organic cations through ion exchange. The study found that the adsorption of the herbicides was affected by the degree of organic cation saturations, the size of organic cations and the different natures of the herbicides. The modified clays intercalated with the larger surfactant molecules at the higher concentrations tended to enhance the adsorption of imazaquin and atrazine. In particular, the organoclays were highly efficient for the removal of imazaquin while the adsorption of atrazine was minimal due to the different hydrophobicities. Both imazaquin and atrazine were influenced by the changes of pH. The amphoteric imazaquin exists as an anion at the pH 5–7 and the anionic imazaquin was protonated to a neutral and further a cationic form when the pH is lower. The weak base, atrazine was also protonated at lower pH values. The anionic imazaquin had a strong affinity to the organoclays on the external surface as well as in the interlayer space of the MMT through electrostatic and hydrophobic interactions. In this study, the electrostatic interaction can be the primary mechanism involved during the adsorption process. This study also investigated a comparative adsorption for the imazaquin and atrazine and the lower adsorption of atrazine was enhanced and this phenomenon was due to the synergetic effect. This work highlights a potential mechanism for the removal of specific persistence herbicides from the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate has been, throughout modern history, a primary attribute for attracting residents to the “Sunshine States” of Florida (USA) and Queensland (Australia). The first major group of settlers capitalized on the winter growing season to support a year-­‐round agricultural economy. As these economies developed, the climate attracted tourism and retirement industries. Yet as Florida and Queensland have blossomed under beneficial climates, the stresses acting on the natural environment are exacting a toll. Southeast Florida and eastern Queensland are among the most vulnerable coastal metropolitan areas in the world. In these places the certainty of sea level rise is measurable with impacts, empirically observable, that will continue to increase regardless of any climate change mitigation.1 The cities of the subtropics share a series of paradoxes relating to climate, resources, environment, and culture. As the subtropical climate entices new residents and visitors there are increasing costs associated with urban infrastructure and the ravages of violent weather. The carefree lifestyle of subtropical cities is increasingly dependent on scarce water and energy resources and the flow of tangible goods that support a trade economy. The natural environment is no longer exploitable as the survival of the human environment is contingent upon the ability of natural ecosystems to absorb the impact of human actions. The quality of subtropical living is challenged by the mounting pressures of population growth and rapid urbanization yet urban form and contemporary building design fail to take advantage of the subtropical zone’s natural attributes of abundant sunshine, cooling breezes and warm temperatures. Yet, by building a global network of local knowledge, subtropical cities like Brisbane, the City of Gold Coast and Fort Lauderdale, are confidently leading the way with innovative and inventive solutions for building resiliency and adaptation to climate change. The Centre for Subtropical Design at Queensland University of Technology organized the first international Subtropical Cities conference in Brisbane, Australia, where the “fault-­‐lines” of subtropical cities at breaking points were revealed. The second conference, held in 2008, shed a more optimistic light with the theme "From fault-­‐lines to sight-­‐lines -­‐ subtropical urbanism in 20-­‐20" highlighting the leadership exemplified in the vitality of small and large works from around the subtropical world. Yet beyond these isolated local actions the need for more cooperation and collaboration was identified as the key to moving beyond the problems of the present and foreseeable future. The spirit of leadership and collaboration has taken on new force, as two institutions from opposite sides of the globe joined together to host the 3rd international conference Subtropical Cities 2011 -­‐ Subtropical Urbanism: Beyond Climate Change. The collaboration between Florida Atlantic University and the Queensland University of Technology to host this conference, for the first time in the United States, forges a new direction in international cooperative research to address urban design solutions that support sustainable behaviours, resiliency and adaptation to sea level rise, green house gas (GHG) reduction, and climate change research in the areas of architecture and urban design, planning, and public policy. With southeast Queensland and southern Florida as contributors to this global effort among subtropical urban regions that share similar challenges, opportunities, and vulnerabilities our mutual aim is to advance the development and application of local knowledge to the global problems we share. The conference attracted over 150 participants from four continents. Presentations by authors were organized into three sub-­‐themes: Cultural/Place Identity, Environment and Ecology, and Social Economics. Each of the 22 papers presented underwent a double-­‐blind peer review by a panel of international experts among the disciplines and research areas represented. The Centre for Subtropical Design at the Queensland University of Technology is leading Australia in innovative environmental design with a multi-­‐disciplinary focus on creating places that are ‘at home’ in the warm humid subtropics. The Broward Community Design Collaborative at Florida Atlantic University's College for Design and Social Inquiry has built an interdisciplinary collaboration that is unique in the United States among the units of Architecture, Urban and Regional Planning, Social Work, Public Administration, together with the College of Engineering and Computer Science, the College of Science, and the Center for Environmental Studies, to engage in funded action research through design inquiry to solve the problems of development for urban resiliency and environmental sustainment. As we move beyond debates about climate change -­‐ now acting upon us -­‐ the subtropical urban regions of the world will continue to convene to demonstrate the power of local knowledge against global forces, thereby inspiring us as we work toward everyday engagement and action that can make our cities more livable, equitable, and green.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern commercial agricultural practices in Asia during the last three to four decades involving chemicals (fertilisers and pesticides) have been associated with large increases in food production never witnessed before, especially under the Green Revolution technology in South Asia. This also involves large-scale increases in commercial vegetable crops. However, the high reliance on chemical inputs to bring about these increases in food production is not without problems. A visible, parallel correlation between higher productivity, high artificial input use and environmental degradation and human ill-health is evident in many countries where commercial agriculture is widespread. In this chapter, we focus on the impact of chemical inputs, in particular the impact of pesticides on the environment and on human health in South Asia with special reference to Sri Lanka...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A curvilinear thin film model is used to simulate the motion of droplets on a virtual leaf surface, with a view to better understand the retention of agricultural sprays on plants. The governing model, adapted from Roy et al. (2002 J. Fluid Mech. 454, 235–261) with the addition of a disjoining pressure term, describes the gravity- and curvature driven flow of a small droplet on a complex substrate: a cotton leaf reconstructed from digitized scan data. Coalescence is the key mechanism behind spray coating of foliage, and our simulations demonstrate that various experimentally observed coalescence behaviours can be reproduced qualitatively. By varying the contact angle over the domain, we also demonstrate that the presence of a chemical defect can act as an obstacle to the droplet’s path, causing break-up. In simulations on the virtual leaf, it is found that the movement of a typical spray size droplet is driven almost exclusively by substrate curvature gradients. It is not until droplet mass is sufficiently increased via coalescence that gravity becomes the dominating force.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contemporary higher education institutions are making significant efforts to develop cohesive, meaningful and effective learning experiences for Science, Technology, Engineering and Mathematics (STEM) curricula to prepare graduates for challenges in the modern knowledge economy, thus enhancing their employability (Carnevale et al, 2011). This can inspire innovative redesign of learning experiences embedded in technology-enhanced educational environments and the development of research-informed, pedagogically reliable strategies fostering interactions between various agents of the learning-teaching process. This paper reports on the results of a project aimed at enhancing students’ learning experiences by redesigning a large, first year mathematics unit for Engineering students at a large metropolitan public university. Within the project, the current study investigates the effectiveness of selected, technology-mediated pedagogical approaches used over three semesters. Grounded in user-centred instructional design, the pedagogical approaches explored the opportunities for learning created by designing an environment containing technological, social and educational affordances. A qualitative analysis of mixed-type questionnaires distributed to students indicated important inter-relations between participants’ frames of references of the learning-teaching process and stressed the importance (and difficulty) of creating appropriate functional context. Conclusions drawn from this study may inform instructional design for blended delivery of STEM-focused programs that endeavor to enhance students’ employability by educating work-ready graduates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project constructed virtual plant leaf surfaces from digitised data sets for use in droplet spray models. Digitisation techniques for obtaining data sets for cotton, chenopodium and wheat leaves are discussed and novel algorithms for the reconstruction of the leaves from these three plant species are developed. The reconstructed leaf surfaces are included into agricultural droplet spray models to investigate the effect of the nozzle and spray formulation combination on the proportion of spray retained by the plant. A numerical study of the post-impaction motion of large droplets that have formed on the leaf surface is also considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary aim of this multidisciplinary project was to develop a new generation of breast implants. Disrupting the currently prevailing paradigm of silicone implants which permanently introduce a foreign body into mastectomy patients, highly porous implants developed as part of this PhD project are biodegradable by the body and augment the growth of natural tissue. Our technology platform leverages computer-assisted-design which allows us to manufacture fully patient-specific implants based on a personalised medicine approach. Multiple animal studies conducted in this project have shown that the polymeric implant slowly degrades within the body harmlessly while the body's own tissue forms concurrently.