966 resultados para 2-dimensional Topology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]In this talk we introduce a new methodology for wind field simulation or forecasting over complex terrain. The idea is to use wind measurements or predictions of the HARMONIE mesoscale model as the input data for an adaptive finite element mass consistent wind model [1,2]. The method has been recently implemented in the freely-available Wind3D code [3]. A description of the HARMONIE Non-Hydrostatic Dynamics can be found in [4]. The results of HARMONIE (obtained with a maximum resolution about 1 Km) are refined by the finite element model in a local scale (about a few meters). An interface between both models is implemented such that the initial wind field approximation is obtained by a suitable interpolation of the HARMONIE results…

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZUSAMMENFASSUNG Die Tauglichkeit von Hybridmaterialien auf der Basis von Zinkphosphathydrat-Zementen zum Einsatz als korrosionshemmende anorganische Pigmente oder zur prothetischen und konservierenden Knochen- und Zahntherapie wird weltweit empirisch seit den neunziger Jahren intensiv erforscht. In der vorliegenden Arbeit wurden zuerst Referenzproben, d.h. alpha-und beta-Hopeite (Abk. a-,b-ZPT) dank eines hydrothermalen Kristallisationsverfahrens in wässerigem Milieu bei 20°C und 90°C hergestellt. Die Kristallstruktur beider Polymorphe des Zinkphosphattetrahydrats Zn3(PO4)2  4 H2O wurde komplett bestimmt. Einkristall-strukturanalyse zeigt, daß der Hauptunterschied zwischen der alpha-und beta-Form des Zinkphosphattetrahydrats in zwei verschiedenen Anordnungen der Wasserstoffbrücken liegt. Die entsprechenden drei- und zweidimensionalen Anordnungen der Wasserstoffbrücken der a-und b-ZPT induzieren jeweils unterschiedliches thermisches Verhalten beim Aufwärmen. Während die alpha-Form ihr Kristallwasser in zwei definierten Stufen verliert, erzeugt die beta-Form instabile Dehydratationsprodukt. Dieses entspricht zwei unabhängigen, aber nebeneinander ablaufenden Dehydratationsmechanismen: (i) bei niedrigen Heizraten einen zweidimensionalen Johnson-Mehl-Avrami (JMA) Mechanismus auf der (011) Ebene, der einerseits bevorzugt an Kristallkanten stattfindet und anderseits von existierenden Kristalldefekten auf Oberflächen gesteuert wird; (ii) bei hohen Heizraten einem zweidimensionalen Diffusionsmechanismus (D2), der zuerst auf der (101) Ebene und dann auf der (110) Ebene erfolgt. Durch die Betrachtung der ZPT Dehydratation als irreversibele heterogene Festkörperstufenreaktion wurde dank eines „ähnlichen Endprodukt“-Protokolls das Dehydratationsphasendiagramm aufgestellt. Es beschreibt die möglichen Zusammenhänge zwischen den verschiedenen Hydratationszuständen und weist auf die Existenz eines Übergangszustandes um 170°C (d.h. Reaktion b-ZPT  a-ZPT) hin. Daneben wurde auch ein gezieltes chemisches Ätzverfahren mit verdünnten H3PO4- und NH3 Lösungen angewendet, um die ersten Stufe des Herauslösens von Zinkphosphat genau zu untersuchen. Allerdings zeigen alpha- und beta-Hopeite charakteristische hexagonale und kubische Ätzgruben, die sich unter kristallographischer Kontrolle verbreitern. Eine zuverlässige Beschreibung der Oberfächenchemie und Topologie konnte nur durch AFM und FFM Experimente erfolgen. Gleichzeitig konnte in dieser Weise die Oberflächendefektdichte und-verteilung und die Volumenauflösungsrate von a-ZPT und b-ZPT bestimmt werden. Auf einem zweiten Weg wurde eine innovative Strategie zur Herstellung von basischen Zinkphosphatpigmenten erster und zweiter Generation (d.h. NaZnPO4  1H2O und Na2ZnPO4(OH)  2H2O) mit dem Einsatz von einerseits oberflächenmodifizierten Polystyrolatices (z.B. produziert durch ein Miniemulsionspolymerisationsverfahren) und anderseits von Dendrimeren auf der Basis von Polyamidoamid (PAMAM) beschritten. Die erhaltene Zeolithstruktur (ZPO) hat in Abhängigkeit von steigendem Natrium und Wassergehalt unterschiedliche kontrollierte Morphologie: hexagonal, würfelförmig, herzförmig, sechsarmige Sterne, lanzettenförmige Dendrite, usw. Zur quantitativen Evaluierung des Polymereinbaus in der Kristallstruktur wurden carboxylierte fluoreszenzmarkierte Latices eingesetzt. Es zeigt sich, daß Polymeradditive nicht nur das Wachstum bis zu 8 µm.min-1 reduzierten. Trotzdem scheint es auch als starker Nukleationsbeschleuniger zu wirken. Dank der Koordinationschemie (d.h. Bildung eines sechszentrigen Komplexes L-COO-Zn-PO4*H2O mit Ligandenaustausch) konnten zwei einfache Mechanismen zur Wirkung von Latexpartikeln bei der ZPO Kristallisation aufgezeigt werden: (i) ein Intrakorona- und (ii) ein Extrakorona-Keimbildungsmechanismus. Weiterhin wurde die Effizienz eines Kurzzeit- und Langzeitkorrosionschutzes durch maßgeschneiderte ZPO/ZPT Pigmente und kontrollierte Freisetzung von Phosphationen in zwei Näherungen des Auslösungsgleichgewichts abgeschätzt: (i) durch eine Auswaschungs-methode (thermodynamischer Prozess) und (ii) durch eine pH-Impulsmethode (kinetischer Prozess. Besonders deutlich wird der Ausflösungs-Fällungsmechanismus (d.h. der Metamorphismus). Die wesentliche Rolle den Natriumionen bei der Korrosionshemmung wird durch ein passendes zusammensetzungsabhängiges Auflösungsmodell (ZAAM) beschrieben, das mit dem Befund des Salzsprühteste und der Feuchtigkeitskammertests konsistent ist. Schließlich zeigt diese Arbeit das herausragende Potential funktionalisierter Latices (Polymer) bei der kontrollierten Mineralisation zur Herstellung maßgeschneiderter Zinkphosphat Materialien. Solche Hybridmaterialien werden dringend in der Entwicklung umweltfreundlicher Korrosionsschutzpigmente sowie in der Dentalmedizin benötigt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monte Carlo simulations are used to study the effect of confinement on a crystal of point particles interacting with an inverse power law potential in d=2 dimensions. This system can describe colloidal particles at the air-water interface, a model system for experimental study of two-dimensional melting. It is shown that the state of the system (a strip of width D) depends very sensitively on the precise boundary conditions at the two ``walls'' providing the confinement. If one uses a corrugated boundary commensurate with the order of the bulk triangular crystalline structure, both orientational order and positional order is enhanced, and such surface-induced order persists near the boundaries also at temperatures where the system in the bulk is in its fluid state. However, using smooth repulsive boundaries as walls providing the confinement, only the orientational order is enhanced, but positional (quasi-) long range order is destroyed: The mean-square displacement of two particles n lattice parameters apart in the y-direction along the walls then crosses over from the logarithmic increase (characteristic for $d=2$) to a linear increase (characteristic for d=1). The strip then exhibits a vanishing shear modulus. These results are interpreted in terms of a phenomenological harmonic theory. Also the effect of incommensurability of the strip width D with the triangular lattice structure is discussed, and a comparison with surface effects on phase transitions in simple Ising- and XY-models is made

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The southern Apennines of Italy have been experienced several destructive earthquakes both in historic and recent times. The present day seismicity, characterized by small-to-moderate magnitude earthquakes, was used like a probe to obatin a deeper knowledge of the fault structures where the largest earthquakes occurred in the past. With the aim to infer a three dimensional seismic image both the problem of data quality and the selection of a reliable and robust tomographic inversion strategy have been faced. The data quality has been obtained to develop optimized procedures for the measurements of P- and S-wave arrival times, through the use of polarization filtering and to the application of a refined re-picking technique based on cross-correlation of waveforms. A technique of iterative tomographic inversion, linearized, damped combined with a strategy of multiscale inversion type has been adopted. The retrieved P-wave velocity model indicates the presence of a strong velocity variation along a direction orthogonal to the Apenninic chain. This variation defines two domains which are characterized by a relatively low and high velocity values. From the comparison between the inferred P-wave velocity model with a portion of a structural section available in literature, the high velocity body was correlated with the Apulia carbonatic platforms whereas the low velocity bodies was associated to the basinal deposits. The deduced Vp/Vs ratio shows that the ratio is lower than 1.8 in the shallower part of the model, while for depths ranging between 5 km and 12 km the ratio increases up to 2.1 in correspondence to the area of higher seismicity. This confirms that areas characterized by higher values are more prone to generate earthquakes as a response to the presence of fluids and higher pore-pressures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, the quaternary structures of Drosophila melanogaster hexamerin LSP-2 and Limulus polyphemus hemocyanin, both proteins from the hemocyanin superfamily, were elucidated to a 10 Å resolution with the technique of cryo-EM 3D-reconstruction. Furthermore, molecular modelling and rigid-body fitting allowed a detailed insight into the cryo-EM structures at atomic level. The results are summarised as follows: Hexamerin 1. The cryo-EM structure of Drosophila melanogaster hexamerin LSP-2 is the first quaternary structure of a protein from the group of the insect storage proteins. 2. The hexamerin LSP-2 is a hexamer of six bean-shaped subunits that occupy the corners of a trigonal antiprism, yielding a D3 (32) point-group symmetry. 3. Molecular modelling and rigid-body fitting of the hexamerin LSP-2 sequence showed a significant correlation between amino acid inserts in the primary structure and additional masses of the cryo-EM structure that are not present in the published quaternary structures of chelicerate and crustacean hemocyanins. 4. The cryo-EM structure of Drosophila melanogaster hexamerin LSP-2 confirms that the arthropod hexameric structure is applicable to insect storage proteins. Hemocyanin 1. The cryo-EM structure of the 8×6mer Limulus polyphemus hemocyanin is the highest resolved quaternary structure of an oligo-hexameric arthropod hemocyanin so far. 2. The hemocyanin is build of 48 bean-shaped subunits which are arranged in eight hexamers, yielding an 8×6mer with a D2 (222) point-group symmetry. The 'basic building blocks' are four 2×6mers that form two 4×6mers in an anti-parallel manner, latter aggregate 'face-to-face' to the 8×6mer. 3. The morphology of the 8×6mer was gauged and described very precisely on the basis of the cryo-EM structure. 4. Based on earlier topology studies of the eight different subunit types of Limulus polyphemus hemocyanin, eleven types of interhexamer interfaces have been identified that in the native 8×6mer sum up to 46 inter-hexamer bridges - 24 within the four 2×6mers, 10 to establish the two 4×6mers, and 12 to assemble the two 4×6mers into an 8×6mer. 5. Molecular modelling and rigid-body fitting of Limulus polyphemus and orthologous Erypelma californicum sequences allowed to assign very few amino acids to each of these interfaces. These amino acids now serve as candidates for the chemical bonds between the eight hexamers. 6. Most of the inter-hexamer contacts are conspicuously histidine-rich and evince constellations of amino acids that could constitute the basis for the allosteric interactions between the hexamers. 7. The cryo-EM structure of Limulus polyphemus hemocyanin opens the door to a fundamental understanding of the function of this highly cooperative protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The understanding of the coupling between superconducting YBa2Cu3O7 (YBCO) layers decoupled by non superconducting PrBa2Cu3O7 (PBCO) layers in c-axis oriented superlattices was the aim of this thesis. For this purpose two conceptually different kind of transport experiments have been performed. rnrnIn the first type of transport experiments the current is flowing parallel to the layers. Here the coupling is probed indirectly using magnetic vortex lines, which are penetrating the superlattice. Movement of the vortex segments in neighbouring YBCO layers is more or less coherent depending on the thickness of both the superconducting and non superconducting layers. This in-plane transport was measured either by sending an external current through bridges patterned in the superlattice or by an induced internal current. rnThe vortex-creep activation energy U was determined by analysis of the in-plane resistive transition in an external magnetic field B oriented along the c-axis. The activation energies for two series of superlattices were investigated. In one series the thickness of the YBCO layers was constant (nY=4 unit cells) and the number of the PBCO unit cells was varied, while in the other the number of PBCO layers was constant (nP=4) and nY varied. The correlation length of the vortex system was determined to be 80 nm along the c-axis direction. It was found that even a single PBCO unit cell in a superlattice effectively cuts the flux lines into shorter weakly coupled segments, and the coupling of the vortex systems in neighbouring layers is negligible already for a thickness of four unit cells of the PBCO layers. A characteristic variation of the activation energy for the two series of superlattices was found, where U0 is proportional to the YBCO thickness. A change in the variation of U0 with the current I in the specimen was observed, which can be explained in terms of a crossover in the vortex creep process, generated by the transport current. At low I values the dislocations mediated (plastic) vortex creep leads to thermally assisted flux-flow behaviour, whereas at high current the dc transport measurements are dominated by elastic (collective) creep.rnThe analysis of standard dc magnetization relaxation data obtained for a series superlattices revealed the occurrence of a crossover from elastic (collective) vortex creep at low temperature to plastic vortex creep at high T. The crossover is generated by the T dependent macroscopic currents induced in the sample. The existence of this creep crossover suggests that, compared with the well known Maley technique, the use of the normalized vortex creep activation energy is a better solution for the determination of vortex creep parameters.rnrnThe second type of transport experiments was to measure directly a possible Josephson coupling between superconducting CuO2 double planes in the superlattices by investigation of the transport properties perpendicular to the superconducting planes. Here three different experiments have been performed. The first one was to pattern mesa structures photolithographically as in previous works. The second used three-dimensional nanostructures cut by a focused ion beam. For the these two experiments insufficient patterning capabilities prevented an observation of the Josephson effect in the current voltage curves. rnA third experiment used a-axis and (110) oriented YBCO films, where in-plane patterning can in principle be sufficient to measure transport perpendicular to the superconducting planes. Therefore the deposition of films with this unusual growth orientation was optimized and investigated. The structural and microstructural evolution of c-axis to a-axis orientation was monitored using x-ray diffraction, scanning electron microscopy and magnetization measurements. Films with full a-axis alignment parallel to the substrate normal could be achieved on (100)SrTiO3. Due to the symmetry of the substrate the c-axis direction in-plane is twofold. Transferring the deposition conditions to films grown on (110)SrTiO3 allowed the growth of (110) oriented YBCO films with a unique in-plane c-axis orientation. While these films were of high quality by crystallographic and macroscopic visual inspection, electron microscopy revealed a coherent crack pattern on a nanoscale. Therefore the actual current path in the sample was not determined by the macroscopic patterning which prohibited investigations of the in-plane anisotropy in this case.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional electron microscopy (3-D EM) provides a framework for the analysis of large protein quaternary structures. The advantage over the generally higher resolving meth- od of X-ray crystallography is the embedding of the proteins in their physiological environ- ment. However, results of the two methods can be combined to obtain superior structural information. In this work, three different protein types – (i) Myriapod hemocyanin, (ii) vesi- cle-inducing protein in plastids 1 (Vipp1) and (iii) acetylcholine-binding protein (AChBP) – were structurally analyzed by 2-D and 3-D EM and, where possible, functionally interpreted.rnMyriapod hemocyanins have been previously shown to be 6x6-meric assemblies that, in case of Scutigera coleoptrata hemocyanin (ScoHc), show two 3x6-mer planes whith a stag- gering angle of approximately 60°. Here, previously observed structural differences between oxy- and deoxy-ScoHc could be substantiated. A 4° rotation between hexamers of two dif- ferent 3x6-mer planes was measured, which originates at the most central inter-hexamer in- terface. Further information about allosteric behaviour in myriapod hemocyanin was gained by analyzing Polydesmus angustus hemocyanin (PanHc), which shows a stable 3x6-mer and divergent histidine patterns in the inter-hexamer interfaces when compared to ScoHc. Both findings would conclusively explain the very different oxygen binding properties of chilopod and diplopod hemocyanin.rnVipp1 is a protein found in cyanobacteria and higher plants which is essential for thyla- koid membrane function and forms highly variable ring-shaped structures. In the course of this study, the first 3-D analysis of Vipp1 was conducted and yielded reconstructions of six differently sized Vipp1 rings from negatively stained images at resolutions between 20 to 30 Å. Furthermore, mutational analyses identified specific N-terminal amino acids that are essential for ring formation. On the basis of these analyses and previously published results, a hypothetical model of the Vipp1 tertiary and quaternary structure was generated.rnAChBP is a water-soluble protein in the hemolymph of mollusks. It is a structural and functional homologue of the ligand-binding domain of nicotinic acetylcholine receptors. For the freshwater snail Biomphalaria glabrata, we previously described two types of AChBP (BgAChBP1 and BgAChBP2). In this work, a 6 Å 3-D reconstruction of native BgAChBP is presented, which shows a dodecahedral assembly that is unprecedented for an AChBP. Single particle analysis of recombinantely expressed BgAChBP types led to preliminary results show- ing a dodecahedral assembly of BgAChBP1 and a dipentameric assembly of BgAChBP2. This indicates divergent biological functions of the two types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In questo lavoro di tesi è presentato un metodo per lo studio della compartimentalizzazione dell’acqua in cellule biologiche, mediante lo studio dell’autodiffusione delle molecole d’acqua tramite uno strumento NMR single-sided. Le misure sono state eseguite nel laboratorio NMR all’interno del DIFA di Bologna. Sono stati misurati i coefficienti di autodiffusione di tre campioni in condizione bulk, ottenendo risultati consistenti con la letteratura. È stato poi analizzato un sistema cellulare modello, Saccharomyces cerevisiae, allo stato solido, ottimizzando le procedure per l’ottenimento di mappe di correlazione 2D, aventi come assi il coefficiente di autodiffusione D e il tempo di rilassamento trasversale T2. In questo sistema l’acqua è confinata e l’autodiffusione è ristretta dalle pareti cellulari, si parla quindi di coefficiente di autodiffusione apparente, Dapp. Mediante le mappe sono state individuate due famiglie di nuclei 1H. Il campione è stato poi analizzato in diluizione in acqua distillata, confermando la separazione del segnale in due distinte famiglie. L’utilizzo di un composto chelato, il CuEDTA, ha permesso di affermare che la famiglia con il Dapp maggiore corrisponde all’acqua esterna alle cellule. L’analisi dei dati ottenuti sulle due famiglie al variare del tempo lasciato alle molecole d’acqua per la diffusione hanno portato alla stima del raggio dei due compartimenti: r=2.3±0.2µm per l’acqua extracellulare, r=0.9±0.1µm per quella intracellulare, che è probabilmente acqua scambiata tra gli organelli e il citoplasma. L’incertezza associata a tali stime tiene conto soltanto dell’errore nel calcolo dei parametri liberi del fit dei dati, è pertanto una sottostima, dovuta alle approssimazioni connesse all’utilizzo di equazioni valide per un sistema poroso costituito da pori sferici connessi non permeabili. Gli ordini di grandezza dei raggi calcolati sono invece consistenti con quelli osservabili dalle immagini ottenute con il microscopio ottico.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atrial flutter in the donor part of orthotopic heart transplants has been reported and successfully treated by radiofrequency ablation of the cavotricuspid isthmus, but mapping and ablation of atypical flutter circuits may be challenging.(1) Entrainment mapping has been used in combination with activation mapping to define the mechanism of atypical atrial flutter. Here, we report a case where colour-coded three-dimensional (3D) entrainment mapping allowed us to accurately determine and visualize the 3D location of the reentrant circuit and to plan the ablation of a left atrial flutter without the need for activation mapping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteoarticular allograft is one possible treatment in wide surgical resections with large defects. Performing best osteoarticular allograft selection is of great relevance for optimal exploitation of the bone databank, good surgery outcome and patient’s recovery. Current approaches are, however, very time consuming hindering these points in practice. We present a validation study of a software able to perform automatic bone measurements used to automatically assess the distal femur sizes across a databank. 170 distal femur surfaces were reconstructed from CT data and measured manually using a size measure protocol taking into account the transepicondyler distance (A), anterior-posterior distance in medial condyle (B) and anterior-posterior distance in lateral condyle (C). Intra- and inter-observer studies were conducted and regarded as ground truth measurements. Manual and automatic measures were compared. For the automatic measurements, the correlation coefficients between observer one and automatic method, were of 0.99 for A measure and 0.96 for B and C measures. The average time needed to perform the measurements was of 16 h for both manual measurements, and of 3 min for the automatic method. Results demonstrate the high reliability and, most importantly, high repeatability of the proposed approach, and considerable speed-up on the planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The advent of imaging software programs has proved to be useful for diagnosis, treatment planning, and outcome measurement, but precision of 3-dimensional (3D) surgical simulation still needs to be tested. This study was conducted to determine whether the virtual surgery performed on 3D models constructed from cone-beam computed tomography (CBCT) can correctly simulate the actual surgical outcome and to validate the ability of this emerging technology to recreate the orthognathic surgery hard tissue movements in 3 translational and 3 rotational planes of space. MATERIALS AND METHODS: Construction of pre- and postsurgery 3D models from CBCTs of 14 patients who had combined maxillary advancement and mandibular setback surgery and 6 patients who had 1-piece maxillary advancement surgery was performed. The postsurgery and virtually simulated surgery 3D models were registered at the cranial base to quantify differences between simulated and actual surgery models. Hotelling t tests were used to assess the differences between simulated and actual surgical outcomes. RESULTS: For all anatomic regions of interest, there was no statistically significant difference between the simulated and the actual surgical models. The right lateral ramus was the only region that showed a statistically significant, but small difference when comparing 2- and 1-jaw surgeries. CONCLUSIONS: Virtual surgical methods were reliably reproduced. Oral surgery residents could benefit from virtual surgical training. Computer simulation has the potential to increase predictability in the operating room.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To propose the determination of the macromolecular baseline (MMBL) in clinical 1H MR spectra based on T(1) and T(2) differentiation using 2D fitting in FiTAID, a general Fitting Tool for Arrays of Interrelated Datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient mixed molecular dynamics/quantum mechanics model has been applied to the water cluster system. The use of the MP2 method and correlation consistent basis sets, with appropriate correction for BSSE, allows for the accurate calculation of electronic and free energies for the formation of clusters of 2−10 water molecules. This approach reveals new low energy conformers for (H2O)n=7,9,10. The water heptamer conformers comprise five different structural motifs ranging from a three-dimensional prism to a quasi-planar book structure. A prism-like structure is favored energetically at low temperatures, but a chair-like structure is the global Gibbs free energy minimum past 200 K. The water nonamers exhibit less complexity with all the low energy structures shaped like a prism. The decamer has 30 conformers that are within 2 kcal/mol of the Gibbs free energy minimum structure at 298 K. These structures are categorized into four conformer classes, and a pentagonal prism is the most stable structure from 0 to 320 K. Results can be used as benchmark values for empirical water models and density functionals, and the method can be applied to larger water clusters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient mixed molecular dynamics/quantum mechanics model has been applied to the water cluster system. The use of the MP2 method and correlation consistent basis sets, with appropriate correction for BSSE, allows for the accurate calculation of electronic and free energies for the formation of clusters of 2−10 water molecules. This approach reveals new low energy conformers for (H2O)n=7,9,10. The water heptamer conformers comprise five different structural motifs ranging from a three-dimensional prism to a quasi-planar book structure. A prism-like structure is favored energetically at low temperatures, but a chair-like structure is the global Gibbs free energy minimum past 200 K. The water nonamers exhibit less complexity with all the low energy structures shaped like a prism. The decamer has 30 conformers that are within 2 kcal/mol of the Gibbs free energy minimum structure at 298 K. These structures are categorized into four conformer classes, and a pentagonal prism is the most stable structure from 0 to 320 K. Results can be used as benchmark values for empirical water models and density functionals, and the method can be applied to larger water clusters.