980 resultados para % saturation
Resumo:
Methyl radicals are generated by pyrolysis of azomethane, and the condition for achieving neat adsorption on Cu(110) is described for studying their chemisorption and reaction characteristics. The radical-surface system is examined by X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, temperature-programmed desorption, low-energy electron diffraction (LEED), and high-resolution electron energy loss spectroscopy under ultrahigh vacuum conditions. It is observed that a small fraction of impinging CH3 radicals decompose into methylene possibly on surface defect sites. This type of CH2 radical has no apparent effect on CH3(ads) surface chemistry initiated by dehydrogenation to form active CH2(ads) followed by chain reactions to yield high-mass alkyl products. All thermal desorption products, such as H-2, CH4, C2H4, C2H6, and C3H6, are detected with a single desorption peak near 475 K. The product yields increase with surface coverage until saturation corresponding to 0.50 monolayer of CH3(ads). The mass distribution is, however, invariant with initial CH3(ads) coverage, and all desorbed species exhibit first-order reaction kinetics. LEED measurement reveals a c(2 x 2) adsorbate structure independent of the amount of gaseous exposure. This strongly suggests that the radicals aggregate into close-packed two-dimensional islands at any exposure. The islanding behavior can be correlated with the reaction kinetics and is deemed to be essential for the chain propagation reactions. Some relevant aspects of the CH3/Cu(111) system are also presented. The new results are compared with those of prior studies employing methyl halides as radical sources. Major differences are found in the product distribution and desorption kinetics, and these are attributed to the influence of surface halogen atoms present in those earlier investigations.
Resumo:
铁杆蒿(Artemisia sacrorum)是菊科(Compositae)蒿属(Artemisia)半灌木状草本,主根木质,生长于我国西北部陕西、甘肃、宁夏、青海、新疆和西南部的西藏等省区海拔1500~4900m的山坡、半荒漠草原、滩地,而且在局部地区为植物群落优势种的主要伴生种(林有润,1991)。铁杆蒿群落是半干旱黄土丘陵沟壑区一种较稳定的地带性植被,也是黄土高原生态脆弱带植被恢复中需要重点研究的天然植物群落之一(王国梁等,2002)。至今对铁杆蒿的研究还不多,主要集中于精油的化学成分(顾静文等,1999)、群落种间联结性(王国梁等,2002)、群落生物量及地上部数量特征(张娜等,1999a;1999b)上,而对铁杆蒿的光合蒸腾特性研究尚未见报道。本文利用Li-6400便携式光合测定系统在野外测定了自然条件下铁杆蒿的光合作用及其对光的响应曲线,旨在了解铁杆蒿的光合与蒸腾特性,为黄土高原植被建设提供理论依据。1试验区自然概况试验地设于陕西延安燕沟流域的康家屹崂沟小流域内。位于109°16′10″E,36°26′36″N,海拔1000~1200m,属暖温带半湿润偏干旱季风气候区,位于黄土丘陵区森林草原地带,...
Resumo:
We fabricated the interdiffused organic photovoltaic devices, which composed of poly (2-methoxy-5-(2'-ethylhexyloxy)-1, 4-phenylenevinylene) (MEH-PPV) and buckminsterfullerene (C-60), by annealing treatment. After annealing, C60 diffused into the MEH-PPV layer, in consequence, MEH-PPV/C-60 interfacial area was increased and their interface became closer proximity. The results lead to reduce reverse-bias saturation current (J(s)), and increase the open-circuit voltage (V-OC) and the short-circuit current (J(SC)).
Resumo:
Magnetically functionalized mesoporous silica spheres with different size (average diameter, A.D.) from 150 nm to 2 mu m and pore size distribution were synthesized by generating magnetic FexOy nanoparticles onto the mesoporous silica hosts using the sol-gel method. The X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), N-2 adsorption/desorption results show that these composites conserved regular sphere morphology and ordered mesoporous structure after the formation of FexOy nanoparticles. XRD and X-ray photoelectron spectroscopy (XPS) analysis confirmed that the FexOy generated in these mesoporous silica hosts is mainly composed of gamma-Fe2O3. Magnetic measurements reveal that these composites with different gamma-Fe2O3 loading amounts possess super-paramagnetic properties at 300 K, and the saturation magnetization increases with increasing Fe ratio loaded.
Resumo:
Magnetic functionalization of the ordered mesoporous SBA-15 (SiO2) aggregate blocks and rice grain-like particles were realized by using a sol-gel method, resulting in the formation of FexOy@SBA-15 composite materials. The X-ray diffraction (XRD), N-2 adsorption/desorption, and transmission electron microscopy (TEM) results show that these composites conserved ordered mesoporous structure after the formation of FexOy nanoparticles in the pores and on the outer surface of SBA-15. It was confirmed by the XRD and X-ray photoelectron spectroscopy (XPS) analysis that the FexOy generated in these mesoporous silica hosts is mainly composed of gamma-Fe2O3. Magnetic measurements reveal that these composites possess superparamagnetic properties at 300 K. The saturation magnetization of these composites increased with the increasing loading amount of gamma-Fe2O3. These composites, which possess high surface area and high pore volume, show magnetic response sufficient for drug targeting in the presence of an external magnetic field.
Resumo:
The surface structure of the iron oxide nanoparticles obtained by the co-precipitation method has been investigated, and a thin layer of alpha-FeOOH absorbed on surface of the nanoparticle is confirmed by analyses of Fourier transform infrared (FTIR), X-ray photoelectron spectra (XPS) and surface photovoltage spectroscopy (SPS). After annealed at 400 degrees C, the alpha-FeOOH can be converted to gamma-Fe2O3. The simple-annealed procedure resulted in the formation of Fe3O4@gamma-Fe2O3 core/shell structure with improved stability and a higher magnetic saturation value, and also the simple method can be used to obtain core/shell structure in other similar system.
Resumo:
A large-scale process combined sonication with self-assembly techniques for the preparation of high-density gold nanoparticles supported on a [Ru(bpy)(3)](2+)-doped silica/Fe3O4 nanocomposite (GNRSF) is provided. The obtained hybrid nanomaterials containing Fe3O4 spheres have high saturation magnetization, which leads to their effective immobilization on the surface of an ITO electrode through simple manipulation by an external magnetic field (without the need of a special immobilization apparatus). Furthermore, this hybrid nanomaterial film exhibits a good and very stable electrochemiluminescence (ECL) behavior, which gives a linear response for tripropylamine (TPA) concentrations between 5 mu m and 0.21 mM, with a detection limit in the micromolar range. The sensitivity of this ECL sensor can be easily controlled by the amount of [Ru(bpy)(3)](2+) immobilized on the hybrid nanomaterials (that is, varying the amount of [Ru(bpy)(3)](2+) during GNRSF synthesis).
Resumo:
Pentacene thin-film transistors have been obtained using polymethyl-methacrylate-co-glyciclyl-methacrylate (PNIMA-GMA) as the gate dielectric. The optimum active layer thickness in thin-film transistors (OTFTs) was investigated. The present devices show a wide operation voltage range. The on/off current ratio is as high as 10(5). In linear region (V-DS = -2V), the field-effect mobility of device increases with the increase in gate field at low-voltage region (V-G < - 20 V), and a mobility of 0.33 cm(2)/Vs can be obtained when V-G > 20 V. In saturation region, the mobility increases linearly with the gate field, and a high mobility of 1.14 cm(2)/Vs can be obtained at V-G = -95V. The influence of voltage on mobility of device was investigated.
Resumo:
The crystal structure and magnetic properties of Sn1-xFexO2 nanograins synthesized by simple hydrothermal method using SnCl4 center dot 5H(2)O and FeCl3 center dot 6H(2)O as raw materials are studied. No secondary phase was found in the XRD spectrum. The linear change of lattice volume for different Fe content strongly supports that the Fe3+ substitutes Sn4+ in SnO2 lattice. A Raman and IR spectra study indicated that the Fe incorporates into the SnO2 lattice. Both ferromagnetic and paramagnetic signals are detected in the Mossbauer spectra. The Sn1-xFexO2 (x <= 0.10) samples show room-temperature ferromagnetism (RTFM) and the saturation magnetization increased with increasing Fe percent. Fe ions present three kinds of magnetic behaviors including paramagnetic, ferromagnetic, and antiferromagnetic in the samples observed by investigation of the M-H and M-T curves. The weak RTFM was due to only a fraction of Fe ions contributing to magnetic-order coupling mediated by oxygen vacancy.
Resumo:
We have investigated the structure, magnetization and magnetoresistance (MR) of the double perovskite compounds Sr2Fe1−xGaxMoO6 (0≤x≤0.25). Rietveld refinement results show that the anti-site defects (ASDs) concentration increases with x, giving rise to highly disordered samples at the B/B positions, for the highest doping levels. The evolution of bond lengths and ions oxidation states could be understood by the distribution of trivalent Ga ions at the B/B positions, which leads to the formation of more disorder structure. The saturation magnetization and Curie temperature decreased with the Ga content increases in the samples, and their origin was found that the cations disorder for the Ga-doped compounds is annihilating double exchange mechanism due to the presence of significant amounts of Fe and Ga cations on the B site. The low-field magnetoresistance of Sr2FeMoO6 (SFMO) can be greatly enhanced by replacing the Fe by the nonmagnetic Ga ion up to a temperature of 300 K,since Ga ions may act as a barrier for electron transport along the chain in the ferromagnetic segregation and weaken the ferromagnetic exchange.
Resumo:
(Ni0.65Zn035Cu0.1Fe1.904)-Cu-./SiO2 natiocomposites were fabricated by the sol-gel method using tetraethylorthosilicate as a precursor of silica, and metal nitrates as precursors of NiZnCu ferrite. With infrared spectra, X-ray diffraction, transmission electron microscope, Raman spectra, Mossbauer spectroscopy and vibrating sample magnetometer measurements, the formation of single phase nanocrystalline NiZnCu ferrites dispersed in silica matrix is confirmed when the sample is annealed at 550degreesC. The transition from the paramagnetic to the ferromagnetic state is observed as the annealing temperature increases from 750degreesC to 1150degreesC. The magnetic properties of these nanocomposites are clearly size dependent. The saturation magnetization increases with the annealing temperature.
Resumo:
Polyvinyl alcohol (PVA) was first used as chelating agent and metal nitrates as precursor of ferrite in the fabrication of nanocrystalline Ni0.65Zn0.35Cu0.1Fe1.9O4 particles by the sol-gel method. The thermal decomposition process of dried gel was studied by thermogravimetry (TG), differential thermal analysis (DTA) and infrared spectra (IR). The structural and magnetic properties of resultant particles were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and Mossbauer spectroscopy. The dependence of the decomposition of dried gel, the formation of spinel structured NiZnCu ferrite, the sizes of annealed particles, the saturation magnetization and coercivity of annealed particles on annealing temperature is presented.
Resumo:
In the present paper, the adsorption of thulium(Ill) from chloride medium on an extraction resin containing bis(2,4,4-trimethylpentyl) monothiophosphinic acid (CL302, HL) has been studied. The results show that 1.5 h is enough for the adsorption equilibrium. The distribution coefficients are determined as a function of the acidity of the aqueous phase and the data are analyzed both graphically and numerically. The plots of log D versus pH give a straight line with a slope of about 3, indicating that 3 protons are released in the adsorption reaction of thulium(III). The content of Cyanex302 in the resin is determined to be 48.21%. The total amount of Tm3+ adsorbed up to resin saturation is determined to be 82.46 mg Tm3+/g resin. Therefore, the sorption reactions of Tm3+ from chloride medium with CL302 can be described as: Tm3+ + 3HL((r)) <----> TmL3(r) + 3H(+) The Freundlich's isothermal adsorption equation is also determined as: log Q = 0.73 log C + 3.05 The amounts (Q) of Tm3+ adsorbed with the resin have been studied at different temperatures (15-40degreesC) at fixed concentrations of Tm3+, amounts of extraction resin, ion strength and acidities in the aqueous phase.
Resumo:
The synthesis of nanocrystalline W-type hexaferrites Ba(CoxZn1-x)(2)Fe16O27 powders by sol-gel auto-combustion method has been investigated. The thermal decomposition process of dried gel was studied by thermogravimetry (TG), differential thermal analysis (DTA) and infrared spectra (IR). The structural and magnetic properties of resultant particles were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM). The results reveal that the dried gel exhibits auto-combustion behavior. After combustion, pure nanocrystalline W-type hexaferrite phase starts to appear at the calcination temperature of 800 degrees C. The crystallinity and the grain size increase at higher temperature. The saturation magnetization and coercivity clearly depend on calcination temperature and Co content X.
Resumo:
Protein multilayers composed of avidin and biotin-labeled antibody (bio-Ab) were prepared on gold surface by layer-by-layer assembly technology using the high specific binding constant (K-a: approximate to 10(15) M-1) between avidin and biotin. The assembly process of the multilayer films was monitored by using real-time BIA technique based on surface plasmon resonance (SPR). The multilayer films were also characterized by electrochemical impedance spectroscopy (EIS) and reflection absorption Fourier transform infrared spectroscopy (FTIR). The results indicate that the growth of the multilayer is uniform. From response of SPR for each layer, the stoichiometry S for the interaction between avidin and bio-Ab is calculated to be 0.37 in the multilayer whereas 0.82 in the first layer. The protein mass concentration for each layer was also obtained. The schematic figure for the multilayer assembly was proposed according to the layer mass, concentration and S value. The utility of the mutilayer films for immunosensing has been investigated via their subsequent interaction with hIgG. The binding ability of the multilayer increased for one to three layers of antibody, and then reach saturation after the fourth layer. These layer-by-layer constructed antibody multilayers enhance the binding ability than covalently immobilized monolayer antibody. This technology can be also used for construction of other thin films for immunosensing and biosensor.