922 resultados para vapor coating
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: A morphological and ultra-structural study of copper vapor laser (λ = 510.6 nm) effects on enamel and dentine was performed to show the effects of this radiation. Methods: A total of 15 human molars were cut in half; 15 pieces were separated for irradiation on enamel and 15 for dentine. These two groups were further divided into five experimental groups, including a control group, comprised of three half-sections each, irradiated by a CVL laser with a power of 7 W, a repetition rate of 15,000 pulses/sec and exposed at 500, 600, and 800 msec and 1 sec irradiation times with a 5-sec interval between irradiations. Results: In an ultra-structural SEM exam, we observed that on the enamel surfaces irradiated for 1 sec there was morphological alteration that consisted of catering, flaking, and melting on the surfaces. There was no alteration for the other exposure times. On the dentine teeth irradiated for 1 sec, we observed an evident ultra-structural alteration of melted tissue and loss of morphological characteristics. In the dentine group irradiated by 800 msec, we observed ablation and a partial loss of morphological characteristics. In the dentine groups irradiated by 500 and 600 msec, no alteration was observed. Conclusions: The results showed that irradiation with CVL promoted morphologic changes in the enamel as well as in the dentine and demonstrated a need for future studies in order to establish a safe protocol for further use in the odontological practice.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
The present work aims to study one-dimensional nanomaterials semiconductors grown via by phase systems Grande oxides Technological Interest for applications in gas sensors. The Used material was tin oxide (SnO2) for their functional properties, and the grow method was the Polymeric Precursors. The films grown were the nanomaterials about substrates of alumina, deposited via spin coating technique, followed by heat treatment at 300C for 1 hour and 650C for 2 hours. Later the films of Performance sensors (sensitivity, speed response, selectivity, and stability) will be in avaliated in a hermetic chamber with controlled atmosphere and temperature. The synthesized materials were its structural and morphological properties characterized in atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (not have this result with Me). We sought to investigate one influence of different conditions for obtaining films (Variation Layers number) in structural and microstructural properties of semiconductors oxides. The synthesis method proved very effective, generating films with micro definitely, uniformity of the nanoparticles and hum high level of porosity, what makes the material of a viable final paragraph applicability
Resumo:
Variable angle of incidence spectroscopic ellipsometry was used to determine the optical constants near the band edge of boron carbide (B5C) thin films deposited on glass and n-type Si(111) via plasma-enhanced chemical-vapor deposition. The index of refraction n, the extinction coefficient k, and the absorption coefficient are reported in the photon energy spectrum between 1.24 and 4 eV. Ellipsometry analysis of B5C films on silicon indicates a graded material, while the optical constants of B5C on glass are homogeneous. Line shape analyses of absorption data for the films on glass indicate an indirect transition at approximately 0.75 eV and a direct transition at about 1.5 eV. ©1996 American Institute of Physics.
Resumo:
The present work aims to study one-dimensional nanomaterials semiconductors grown via by phase systems Grande oxides Technological Interest for applications in gas sensors. The Used material was tin oxide (SnO2) for their functional properties, and the grow method was the Polymeric Precursors. The films grown were the nanomaterials about substrates of alumina, deposited via spin coating technique, followed by heat treatment at 300C for 1 hour and 650C for 2 hours. Later the films of Performance sensors (sensitivity, speed response, selectivity, and stability) will be in avaliated in a hermetic chamber with controlled atmosphere and temperature. The synthesized materials were its structural and morphological properties characterized in atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (not have this result with Me). We sought to investigate one influence of different conditions for obtaining films (Variation Layers number) in structural and microstructural properties of semiconductors oxides. The synthesis method proved very effective, generating films with micro definitely, uniformity of the nanoparticles and hum high level of porosity, what makes the material of a viable final paragraph applicability
Resumo:
Color vision was examined in subjects with long-term occupational exposure to mercury (Hg) vapor. The color vision impairment was assessed by employing a quantitative measure of distortion of individual and group perceptual color spaces. Hg subjects (n = 18; 42.1 +/- 6.5 years old; exposure time = 10.4 +/- 5.0 years; time away from the exposure source = 6.8 +/- 4.6 years) and controls (n = 18; 46.1 +/- 8.4 years old) were examined using two arrangement tests, D-15 and D-15d, in the traditional way, and also in a triadic procedure. From each subject`s `odd-one-out` choices, matrices of inter-cap subjective dissimilarities were derived and processed by non-metric multidimensional scaling (MDS). D-15d results differed significantly between the Hg-group and the control group (p < 0.05), with the impairment predominantly along the tritan axis. 2D perceptual color spaces, individual and group, were reconstructed, with the dimensions interpreted as the red-green (RG) and the blue-yellow (BY) systems. When color configurations from the Hg-group were compared to those of the controls, they presented more fluctuations along both chromatic dimensions, indicating a statistically significant difference along the BY axis. In conclusion, the present findings confirm that color vision impairments persist in subjects that have received long-term occupational exposure to Hg-vapor although, at the time of testing, they were presenting mean urinary concentration within the normal range for non-exposed individuals. Considering the advantages of the triadic procedure in clinical evaluation of acquired color vision deficiencies, further studies should attempt to verify and/or improve its efficacy.
Resumo:
Objective: To evaluate whether there are visual and neurophysical decrements in workers with low exposure to Hg vapor. Methods: Visual fields, contrast sensitivity, color vision, and neuropsychological functions were measured in 10 workers (32.5 +/- 8.5 years) chronically exposed to Hg vapor (4.3 +/- 2.8 years; urinary Hg concentration 22.3 +/- 9.3 mu g/g creatinine). Results: For the worst eyes, we found altered visual field thresholds, lower contrast sensitivity, and color discrimination compared with controls (P < 0.05). There were no significant differences between Hg-exposed subjects and controls on. neuropsychological tests. Nevertheless, duration of exposure was statistically correlated to verbal memory and depression scores. Conclusions: Chronic exposure to Hg vapor at currently accepted safety levels was found to be associated with visual losses but not with neuropsychological dysfunctions in the sample of workers studied. (J Occup Environ Med. 2009,51:1403-1412)
Resumo:
This longitudinal study addresses the reversibility of color vision losses in subjects who had been occupationally exposed to mercury vapor. Color discrimination was assessed in 20 Hg-exposed patients (mean age = 42.4 +/- 6.5 years; 6 females and 14 males) with exposure to Hg vapor during 10.5 +/- 5.3 years and away from the work place (relative to 2002) for 6.8 +/- 4.2 years. During the Hg exposure or up to one year after ceasing it, mean urinary Hg concentration was 47 +/- 35.4 mu g/g creatinine. There was no information on Hg urinary concentration at the time of the first tests, in 2002 (Ventura et al., 2005), but at the time of the follow-up tests, in 2005, this value was 1.4 +/- 1.4 mu g/g creatinine for patients compared with 0.5 +/- 0.5 mu g/g creatinine for controls (different group from the one in Ventura et al. (2005)). Color vision was monocularly assessed using the Cambridge Colour Test (CCT). Hg-exposed patients had significantly worse color discrimination (p < 0.02) than controls, as evaluated by the size of MacAdam`s color discrimination ellipses and color discrimination thresholds along protan, deutan, and tritan confusion axes. There were no significant differences between the results of the study in Ventura et al. (2005) and in the present follow-up measurements, in 2005, except for worsening of the tritan thresholds in the best eye in 2005. Both chromatic systems, blue-yellow and red-green, were affected in the first evaluation (Ventura et al., 2005) and remained impaired in the follow-up testing, in 2005. These findings indicate that following a long-term occupational exposure to Hg vapor, even several years away from the source of intoxication, color vision impairment remains irreversible.
Resumo:
Visual field losses associated with mercury (Hg) exposure have only been assessed in patients exposed to methylmercury. Here we evaluate the automated visual field in 35 ex-workers (30 males; 44.20+/-5.92 years) occupationaly exposed to mercury vapor and 34 controls (21 males; 43.29+/-8.33 years). Visual fields were analyzed with the Humphrey Field Analyzer II (model 750i) using two tests: the standard automated perimetry (SAP, white-on-white) and the short wavelength automated perimetry (SWAP, blue-on-yellow) at 76 locations within a 27 degrees central visual field. Results were analyzed as the mean of the sensitivities measured at the fovea, and at five successive concentric rings, of increasing eccentricity, within the central field. Compared to controls, visual field sensitivities of the experimental group measured using SAP were lower for the fovea as well as for all five eccentricity rings (p<0.05). Sensitivities were significantly lower in the SWAP test (p<0.05) for four of the five extra-foveal eccentricity rings; they were not significant for the fovea (p = 0.584) or for the 15 degrees eccentricity ring (p = 0.965). These results suggest a widespread reduction of sensitivity in both visual field tests. Previous reports in the literature describe moderate to severe concentric constriction of the visual field in subjects with methylmercury intoxication measured manually with the Goldman perimeter. The present results amplify concerns regarding potential medical risks of exposure to environmental mercury sources by demonstrating significant and widespread reductions of visual sensitivity using the more reliable automated perimetry. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Contrast sensitivity (CS) was evaluated in 41 former workers from a lamp manufacturing plant who were on disability retirement due to exposure to mercury and 14 age-matched controls. The CS was measured monocularly using the sweep visual evoked potential (sVEP) paradigm at 6 spatial frequencies (0.2, 0.8, 2.0, 4.0, 15.0, and 30 cpd). Statistical difference (p < 0.05) was found between the controls and the patient right and left eyes for 2.0 and 4.0 cpd. According the results in those spatial frequencies the eyes were classified in best and worst. Statistical differences were found between the controls and the best eyes for 2.0 and 4.0 cpd and for 0.8, 2.0, and 4.0 cpd for their worst eyes. No correlation was found between CS results and the time of exposure (mean 8.9 yr +/- 4.1), time away from the mercury source (mean = 6.0 yr +/- 3.9), urinary mercury level at the time of work (mean = 40.6 mu g/g +/-36.3) or with the mercury level at the CS measurement time (mean = 1.6 mu g/g +/-1.1). We show the first evidence of a permanent impairment in CS measured objectively with the sVEP. Our data complement the previous psychophysical works reporting a diffuse impairment in the CS function showing a CS reduction in the low to middle spatial frequencies. In conclusion, non-reversible CS impairment was found in occupational exposure to mercury vapor. We suggest that CS measurement should be included in studies of the mercury effects of occupational exposure. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Spray coating was used to produce thallium bromide samples on glass substrates. The influence of several fabrication parameters on the final structural properties of the samples was investigated. Substrate position, substrate temperature, solution concentration, carrying gas, and solution flow were varied systematically, the physical deposition mechanism involved in each case being discussed. Total deposition time of about 3.5 h can lead to 62-mu m-thick films, comprising completely packed micrometer-sized crystalline grains. X-ray diffraction and scanning electron microscopy were used to characterize the samples. On the basis of the experimental data, the optimum fabrication conditions were identified. The technique offers an alternative method for fast, cheap fabrication of large-area devices for the detection of high-energy radiation, i.e., X-rays and gamma-rays, in medical imaging.
Resumo:
The water vapor conductance (G(H20)) of the neosauropod eggs from the Lower Cretaceous Sanagasta nesting site in La Rioja Province, Argentina, was examined and compared with other Cretaceous Argentinean oological material. The 2900 mgH(2)O/day.Torr G(H2O) of the Sanagasta eggshells confirms an extremely moist nesting environment and supports field observations of dug-out nests in a geothermal setting. The observed thinning of the outer eggshell surface during incubation increases gas conductance and concomitantly decreases eggshell mechanical resistance during the late ontogenetic stages, thus facilitating embryonic development and hatching. The Sanagasta and Entre Rios Province faveoloolithid eggs display the highest and comparable 61120 values and share several morphological and diagenetic characters, indicating comparable nesting strategy in geothermal settings. However, the faveoloolithid Yamintie and La Pampa Province specimens cluster together with lower G(H20) values closer to the megaloolithid eggs. The Gnu) of the megaloolithid egg Megaloolithus patagonicus was reconsidered and new results are now congruent with other reported megaloolithid GH2O values. Additionally, we hypothesize that V-shaped pore canals of M. patagonicus, which upper sections reach only the top third or half eggshell thickness and, a wider section in the middle would not compromise the overall egg mechanical resistance like vertical pores connecting directly the outer to the inner eggshell surfaces. Such pore spatial arrangement and geometry would enhance, as the eggshell thins during incubation, a greater G(H2O), G(O2) and G(CO2) and facilitate embryonic development in high moisture nesting contents. Overall, data suggests that neosauropod nesting and brooding behaviors were dependent on elevated moisture nesting environments.
Resumo:
The wide variety of molecular architectures used in sensors and biosensors and the large amount of data generated with some principles of detection have motivated the use of computational methods, such as information visualization techniques, not only to handle the data but also to optimize sensing performance. In this study, we combine projection techniques with micro-Raman scattering and atomic force microscopy (AFM) to address critical issues related to practical applications of electronic tongues (e-tongues) based on impedance spectroscopy. Experimentally, we used sensing units made with thin films of a perylene derivative (AzoPTCD acronym), coating Pt interdigitated electrodes, to detect CuCl(2) (Cu(2+)), methylene blue (MB), and saccharose in aqueous solutions, which were selected due to their distinct molecular sizes and ionic character in solution. The AzoPTCD films were deposited from monolayers to 120 nm via Langmuir-Blodgett (LB) and physical vapor deposition (PVD) techniques. Because the main aspects investigated were how the interdigitated electrodes are coated by thin films (architecture on e-tongue) and the film thickness, we decided to employ the same material for all sensing units. The capacitance data were projected into a 2D plot using the force scheme method, from which we could infer that at low analyte concentrations the electrical response of the units was determined by the film thickness. Concentrations at 10 mu M or higher could be distinguished with thinner films tens of nanometers at most-which could withstand the impedance measurements, and without causing significant changes in the Raman signal for the AzoPTCD film-forming molecules. The sensitivity to the analytes appears to be related to adsorption on the film surface, as inferred from Raman spectroscopy data using MB as analyte and from the multidimensional projections. The analysis of the results presented may serve as a new route to select materials and molecular architectures for novel sensors and biosensors, in addition to suggesting ways to unravel the mechanisms behind the high sensitivity obtained in various sensors.