853 resultados para subcellular targeting
Resumo:
Acute myeloid leukemia (AML) is mostly driven by oncogenic transcription factors, which have been classically viewed as intractable targets using small molecule inhibitor approaches. Here, we demonstrate that AML driven by repressive transcription factors including AML1-ETO and PML-RARα are extremely sensitive to Poly (ADP-ribose) Polymerase (PARP) inhibitor (PARPi), in part due to their suppressed expression of key homologous recombination genes and thus compromised DNA damage response (DDR). In contrast, leukemia driven by MLL fusions with dominant transactivation ability is proficient in DDR and insensitive to PARP inhibition. Intriguing, depletion of an MLL downstream target, Hoxa9 that activates expression of various HR genes, impairs DDR and sensitizes MLL leukemia to PARPi. Conversely, Hoxa9 over-expression confers PARPi resistance to AML1-ETO and PML-RARα transformed cells. Together, these studies describe a potential utility of PARPi-induced synthetic lethality for leukemia treatment and reveal a novel molecular mechanism governing PARPi sensitivity in AML.
Resumo:
Abstract for 24th Biennial Congress of the European Association for Cancer Research, 9–12 July 2016, Manchester, UK. Poster Session: Cancer Genomics, Epigenetics and Genome Instability II: Monday 11 July 2016
Resumo:
Scammers target vulnerable people through a variety of methods & exploit our emotions and values. Safeguard your personal information.
Resumo:
With the proliferation of Internet, online shopping has become an increasingly essential part of global economy and thus, increasingly important field of research. While the internationalization process of a company has for long been in the focus of academic research, internationalization of e-commerce is a much newer field of study. The earlier empirical research has amply pointed out the difficulties of traditional internationalization models to explain the internationalization process of e-commerce companies. Conversely, business networks have been argued to play a major role in the e-commerce internationalization. The purpose of this study is to study how business networks influence the internationalization process of e-commerce companies. Conducted as a case study, this research studies the internationalization process of two Finnish e-commerce companies, Hong Kong and Hifi Studio, into possibly one of the most booming online markets - Russia. The empirical findings of the study concur with the earlier literature. The observed internationalization process differs from the assumptions of traditional international business models, and business networks are found influential for the process. However, the behavior of the two studied organizations is observed more independent than the network view to internationalization presumes. The trigger to internationalize rises from within the organizations and market potential is the primary explanation for selection of target markets. No network relationships were found to have an effect on foreign market selection, nor selection of mode of operations. This study indicates that exploring foreign markets is actually about investing in specific relationships within a business network, rather than overcoming economic, institutional, and cultural barriers. Companies utilize a wide array of relationships in their internationalization process and may effectively overcome disadvantages of operating in a foreign market by adopting partnerships with correct partners. However, building and maintaining operational business relationships is a demanding process, and organizations should prefer quality over quantity in their partner selection. Moreover, relationships where the focal party possess significant influence and leverage over other actor should be favored. Lastly, relationships need to be continuously evaluated and assessed in comparison with strategic business goals. Ultimately, e-commerce can be considered a new, low-risk, cost-effective, and relationship-oriented internationalization method, suitable especially in volatile market conditions as Russia today. This revolutionary new mode of international business activity calls for more profound focus of business managers and academia alike, as its weight on global trade continues to grow.
Resumo:
The leishmaniases are neglected tropical diseases with an urgent need for effective drugs. Better understanding of the metabolism of the causative parasites will hopefully lead to development of new compounds targeted at critical points of the parasite’s biochemical pathways. In my work I focused on the pentose phosphate pathway of Leishmania, specifically on transketolase, sugar utilisation, and comparison between insect and mammalian infective stages of the parasites. The pentose phosphate pathway (PPP) is the major cellular source of NADPH, an agent critical for oxidative stress defence. The PPP uses glucose, reduces the NADP+ cofactor and produces various sugar phosphates by mutual interconversions. One of the enzymes involved in this latter part is transketolase (TKT). A Leishmania mexicana cell line deleted in transketolase (Δtkt) was assessed regarding viability, sensitivity to a range of drugs, changes in metabolism, and infectivity. The Δtkt cell line had no obvious growth defect in the promastigote stage, but it was more sensitive to an oxidative stress inducing agent and most of the drugs tested. Most importantly, the Δtkt cells were not infective to mice, establishing TKT as a new potential drug target. Metabolomic analyses revealed multiple changes as a consequence of TKT deletion. Levels of the PPP intermediates upstream of TKT increased substantially, and were diverted into additional reactions. The perturbation triggered further changes in metabolism, resembling the ‘stringent metabolic response’ of amastigotes. The Δtkt cells consumed less glucose and glycolytic intermediates were decreased indicating a decrease in flux, and metabolic end products were diminished in production. The decrease in glycolysis was possibly caused by inhibition of fructose-1,6-bisphosphate aldolase by accumulation of the PPP intermediates 6-phosphogluconate and ribose 5-phosphate. The TCA cycle was fuelled by alternative carbon sources, most likely amino acids, instead of glucose. It remains unclear why deletion of TKT is lethal for amastigotes, increased sensitivity to oxidative stress or drop in mannogen levels may contribute, but no definite conclusions can be made. TKT localisation indicated interesting trends too. The WT enzyme is present in the cytosol and glycosomes, whereas a mutant version, truncated by ten amino acids, but retaining a C-terminal targeting sequence, localised solely to glycosomes. Surprisingly, cells expressing purely cytosolic or glycosomal TKT did not have different phenotypes regarding growth, oxidative stress sensitivity or any detected changes in metabolism. Hence, control of the subcellular localisation remains unclear as well as its function. However, these data are in agreement with the presumed semipermeable nature of the glycosome. Further, L. mexicana promastigote cultures were grown in media with different combinations of labelled glucose and ribose and their incorporation into metabolism was followed. Glucose was the preferred carbon source, but when not available, it could be fully replaced with ribose. I also compared metabolic profiles from splenic amastigotes, axenic amastigotes and promastigotes of L. donovani. Metabolomic analysis revealed a substantial drop in amino acids and other indications coherent with a stringent metabolic response in amastigotes. Despite some notable differences, axenic and splenic amastigotes demonstrated fairly similar results both regarding the total metabolic profile and specific metabolites of interest.
Resumo:
A recently acknowledged morphological pathway to colorectal cancer originates from precursor polyps with a serrated appearance due to branching and folding of the colon epithelium. This serrated origin accounts for up to 30% of all colorectal tumors but these are heterogeneous regarding molecular characteristics and patient outcome. Here we review the current knowledge about the classification of this tumor subtype and its association with five key features: mutation status of the BRAF or KRAS genes, the CpG island methylation phenotype, microsatellite instability, immune cell infiltration, and overexpression of GTPase RAC1b. Subsequently, available therapeutic approaches for targeting these molecular characteristics are presented and critically discussed.
Resumo:
International audience
Resumo:
Numéro spécial: Translational Nanomedicine
Resumo:
Over the past years, ω3 fatty acids, namely EPA and DHA, have been recognized as presenting multiple health benefits. Several studies consider fish oil as the most important source of EPA and DHA. Nowadays, canned fish industry plays a very important role in Portuguese economy. However, expansion of this business brought some environmental concerns due to the high amount of by-products generated. Nevertheless, this problem can be substantially reduced by the recovery of some of the by-product components, diminishing its contamination load and simultaneously obtaining value-added products. This study was born from the growing interest in obtaining new sources of lipids rich in ω3 fatty acids, combined with environmental concerns related to the production of wastes from the fish canning industries, rich in these compounds. It thus intends to evaluate lipid extraction methods in liquid by-products from the fish canning industry, aiming to obtain fractions rich in ω3 fatty acids. Additionally, in a biorefining concept, the protein content of the remaining aqueous fractions was also quantified.
Resumo:
International audience
Resumo:
International audience
Resumo:
New devices were designed to generate a localized mechanical vibration of flexible gels where human umbilical vein endothelial cells (HUVECs) were cultured. The stimulation setups were able to apply relatively large strains (30%~50%) at high temporal frequencies (140~207 Hz) in a localized subcellular region. One of the advantages of this technique was to be less invasive to the innate cellular functions because there was no direct contact between the stimulating probe and the cell body. A mechanical vibration induced by the device in the substrate gel where cells were seeded could mainly cause global calcium responses of the cells. This global response was initiated by the influx of calcium across the stretch-activated channels in the plasma membrane. The subsequent production of inositol triphosphate (IP3) via phospholipase C (PLC) activation triggered the calcium release from the endoplasmic reticulum (ER) to cause a global intracellular calcium fluctuation over the whole cell body. This global calcium response was also shown to depend on actomyosin contractility and F-actin integrity, probably controlling the membrane stretch-activated channels. The localized nature of the stimulation is one of the most important features of these new designs as it allowed the observation of the calcium signaling propagation by ER calcium release. The next step was to focus on the calcium influx, more specifically the TRPM7 channels. As TRPM7 expression may modulate cell adhesion, an adhesion assay was developed and tested on HUVECs seeded on gel substrates with different treatments: normal treatment on gels showed highest attachment rate, followed by the partially treated gels (only 5% of usual fibronectin amount) and untreated gels, with the lowest attachment rate. The trend of the attachment rates correlated to the magnitude of the calcium signaling observed after mechanical stimulation. TRPM7 expression inhibition by siRNA caused an increased attachment rate when compared to both control and non-targeting siRNA-treated cells, but resulted in an actual weaker response in terms of calcium signaling. It suggests that TRPM7 channels are indeed important for the calcium signaling in response to mechanical stimulation. A complementary study was also conducted consisting in the mechanical stimulation of a dissected Drosophila embryo. Although ionomycin treatment showed calcium influx in the tissue, the mechanical stimulation delivered as a vertical vibration did not elicited calcium signaling in response. One possible reason is the dissection procedure causing desensitization of the tissue due to the scrapings and manipulations to open the embryo.
Resumo:
Globally cardiovascular diseases are the main cause of death. In clinical practice we are able to advise an control several risk factors that might benefit our patients. But we know that trying to reach all goals we might chew more than we can swallow
Resumo:
Ink Disease is considered one of the most important causes of the decline of chestnut orchards. The break in yield of Castanea sativa Mill is caused by two species: Phytophthora cinnamomi and Phytophthora cambivora, being the first one the foremost pathogen of ink disease in Portugal. P. cinnamomi is one of the most aggressive and widespread plant pathogen with nearly 1,000 host species. This oomycete causes enormous economic losses and it is responsible for the decline of many plant species in Europe and worldwide. Up to now no efficient treatments are available to fight these pathogens. Because of the importance of chestnut at economical and ecological levels, especially in Portugal, it becomes essential to explore the molecular mechanisms that determine the interaction between Phytophthora species and host plants through the study of proteins GIP (glucanase inhibitor protein) and NPP1 (necrosis-inducing Phytophthora protein 1) produced by P. cinnamomi during the infection. The technique of RNA interference was used to knockdown the gip gene of P. cinnamomi. Transformants obtained with the silenced gene have been used to infect C. sativa, in order to determine the effect of gene silencing on the plant phenotype. To know more about the function of GIP and NPP1 involved in the mechanism of infection, the ORF’s of gip and npp1 genes have been cloned to the pTOR-eGFP vector for a future observation of P. cinnamomi transformants with fluorescent microscopy and determination of the subcellular localization. Moreover the prediction by bioinformatics tools indicates that both GIP and NPP1 proteins are secreted. The results allow to predict the secretory destination of both GIP and NPP1 proteins and confirm RNAi as a potential alternative biological tool in the control and management of P. cinnamomi. Keywords: