913 resultados para structure, analysis, modeling


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human African trypanosomiasis, also known as sleeping sickness, is a major cause of death in Africa, and for which there are no safe and effective treatments available. The enzyme aldolase from Trypanosoma brucei is an attractive, validated target for drug development. A series of alkyl‑glycolamido and alkyl-monoglycolate derivatives was studied employing a combination of drug design approaches. Three-dimensional quantitative structure-activity relationships (3D QSAR) models were generated using the comparative molecular field analysis (CoMFA). Significant results were obtained for the best QSAR model (r2 = 0.95, non-cross-validated correlation coefficient, and q2 = 0.80, cross-validated correlation coefficient), indicating its predictive ability for untested compounds. The model was then used to predict values of the dependent variables (pKi) of an external test set,the predicted values were in good agreement with the experimental results. The integration of 3D QSAR, molecular docking and molecular dynamics simulations provided further insight into the structural basis for selective inhibition of the target enzyme.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ion channels are protein molecules, embedded in the lipid bilayer of the cell membranes. They act as powerful sensing elements switching chemicalphysical stimuli into ion-fluxes. At a glance, ion channels are water-filled pores, which can open and close in response to different stimuli (gating), and one once open select the permeating ion species (selectivity). They play a crucial role in several physiological functions, like nerve transmission, muscular contraction, and secretion. Besides, ion channels can be used in technological applications for different purpose (sensing of organic molecules, DNA sequencing). As a result, there is remarkable interest in understanding the molecular determinants of the channel functioning. Nowadays, both the functional and the structural characteristics of ion channels can be experimentally solved. The purpose of this thesis was to investigate the structure-function relation in ion channels, by computational techniques. Most of the analyses focused on the mechanisms of ion conduction, and the numerical methodologies to compute the channel conductance. The standard techniques for atomistic simulation of complex molecular systems (Molecular Dynamics) cannot be routinely used to calculate ion fluxes in membrane channels, because of the high computational resources needed. The main step forward of the PhD research activity was the development of a computational algorithm for the calculation of ion fluxes in protein channels. The algorithm - based on the electrodiffusion theory - is computational inexpensive, and was used for an extensive analysis on the molecular determinants of the channel conductance. The first record of ion-fluxes through a single protein channel dates back to 1976, and since then measuring the single channel conductance has become a standard experimental procedure. Chapter 1 introduces ion channels, and the experimental techniques used to measure the channel currents. The abundance of functional data (channel currents) does not match with an equal abundance of structural data. The bacterial potassium channel KcsA was the first selective ion channels to be experimentally solved (1998), and after KcsA the structures of four different potassium channels were revealed. These experimental data inspired a new era in ion channel modeling. Once the atomic structures of channels are known, it is possible to define mathematical models based on physical descriptions of the molecular systems. These physically based models can provide an atomic description of ion channel functioning, and predict the effect of structural changes. Chapter 2 introduces the computation methods used throughout the thesis to model ion channels functioning at the atomic level. In Chapter 3 and Chapter 4 the ion conduction through potassium channels is analyzed, by an approach based on the Poisson-Nernst-Planck electrodiffusion theory. In the electrodiffusion theory ion conduction is modeled by the drift-diffusion equations, thus describing the ion distributions by continuum functions. The numerical solver of the Poisson- Nernst-Planck equations was tested in the KcsA potassium channel (Chapter 3), and then used to analyze how the atomic structure of the intracellular vestibule of potassium channels affects the conductance (Chapter 4). As a major result, a correlation between the channel conductance and the potassium concentration in the intracellular vestibule emerged. The atomic structure of the channel modulates the potassium concentration in the vestibule, thus its conductance. This mechanism explains the phenotype of the BK potassium channels, a sub-family of potassium channels with high single channel conductance. The functional role of the intracellular vestibule is also the subject of Chapter 5, where the affinity of the potassium channels hEag1 (involved in tumour-cell proliferation) and hErg (important in the cardiac cycle) for several pharmaceutical drugs was compared. Both experimental measurements and molecular modeling were used in order to identify differences in the blocking mechanism of the two channels, which could be exploited in the synthesis of selective blockers. The experimental data pointed out the different role of residue mutations in the blockage of hEag1 and hErg, and the molecular modeling provided a possible explanation based on different binding sites in the intracellular vestibule. Modeling ion channels at the molecular levels relates the functioning of a channel to its atomic structure (Chapters 3-5), and can also be useful to predict the structure of ion channels (Chapter 6-7). In Chapter 6 the structure of the KcsA potassium channel depleted from potassium ions is analyzed by molecular dynamics simulations. Recently, a surprisingly high osmotic permeability of the KcsA channel was experimentally measured. All the available crystallographic structure of KcsA refers to a channel occupied by potassium ions. To conduct water molecules potassium ions must be expelled from KcsA. The structure of the potassium-depleted KcsA channel and the mechanism of water permeation are still unknown, and have been investigated by numerical simulations. Molecular dynamics of KcsA identified a possible atomic structure of the potassium-depleted KcsA channel, and a mechanism for water permeation. The depletion from potassium ions is an extreme situation for potassium channels, unlikely in physiological conditions. However, the simulation of such an extreme condition could help to identify the structural conformations, so the functional states, accessible to potassium ion channels. The last chapter of the thesis deals with the atomic structure of the !- Hemolysin channel. !-Hemolysin is the major determinant of the Staphylococcus Aureus toxicity, and is also the prototype channel for a possible usage in technological applications. The atomic structure of !- Hemolysin was revealed by X-Ray crystallography, but several experimental evidences suggest the presence of an alternative atomic structure. This alternative structure was predicted, combining experimental measurements of single channel currents and numerical simulations. This thesis is organized in two parts, in the first part an overview on ion channels and on the numerical methods adopted throughout the thesis is provided, while the second part describes the research projects tackled in the course of the PhD programme. The aim of the research activity was to relate the functional characteristics of ion channels to their atomic structure. In presenting the different research projects, the role of numerical simulations to analyze the structure-function relation in ion channels is highlighted.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN] Sediment materials play an important role on the dynamic response of large structures where fluid-soil-structure interaction is relevant and materials of that kind are present. Dam-reservoir systems and harbor structures are examples of civil engineering constructions where those effects are significant.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN]This paper deals with two-dimensional time harmonic fluid-structure interaction problems when the fluid is at rest, and the elastic bodies have small thicknesses. A BEM-FEM numerical approach is used, where the BEM is applied to the fluid, and the structural FEM is applied to the thin elastic bodies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The vast majority of known proteins have not yet been experimentally characterized and little is known about their function. The design and implementation of computational tools can provide insight into the function of proteins based on their sequence, their structure, their evolutionary history and their association with other proteins. Knowledge of the three-dimensional (3D) structure of a protein can lead to a deep understanding of its mode of action and interaction, but currently the structures of <1% of sequences have been experimentally solved. For this reason, it became urgent to develop new methods that are able to computationally extract relevant information from protein sequence and structure. The starting point of my work has been the study of the properties of contacts between protein residues, since they constrain protein folding and characterize different protein structures. Prediction of residue contacts in proteins is an interesting problem whose solution may be useful in protein folding recognition and de novo design. The prediction of these contacts requires the study of the protein inter-residue distances related to the specific type of amino acid pair that are encoded in the so-called contact map. An interesting new way of analyzing those structures came out when network studies were introduced, with pivotal papers demonstrating that protein contact networks also exhibit small-world behavior. In order to highlight constraints for the prediction of protein contact maps and for applications in the field of protein structure prediction and/or reconstruction from experimentally determined contact maps, I studied to which extent the characteristic path length and clustering coefficient of the protein contacts network are values that reveal characteristic features of protein contact maps. Provided that residue contacts are known for a protein sequence, the major features of its 3D structure could be deduced by combining this knowledge with correctly predicted motifs of secondary structure. In the second part of my work I focused on a particular protein structural motif, the coiled-coil, known to mediate a variety of fundamental biological interactions. Coiled-coils are found in a variety of structural forms and in a wide range of proteins including, for example, small units such as leucine zippers that drive the dimerization of many transcription factors or more complex structures such as the family of viral proteins responsible for virus-host membrane fusion. The coiled-coil structural motif is estimated to account for 5-10% of the protein sequences in the various genomes. Given their biological importance, in my work I introduced a Hidden Markov Model (HMM) that exploits the evolutionary information derived from multiple sequence alignments, to predict coiled-coil regions and to discriminate coiled-coil sequences. The results indicate that the new HMM outperforms all the existing programs and can be adopted for the coiled-coil prediction and for large-scale genome annotation. Genome annotation is a key issue in modern computational biology, being the starting point towards the understanding of the complex processes involved in biological networks. The rapid growth in the number of protein sequences and structures available poses new fundamental problems that still deserve an interpretation. Nevertheless, these data are at the basis of the design of new strategies for tackling problems such as the prediction of protein structure and function. Experimental determination of the functions of all these proteins would be a hugely time-consuming and costly task and, in most instances, has not been carried out. As an example, currently, approximately only 20% of annotated proteins in the Homo sapiens genome have been experimentally characterized. A commonly adopted procedure for annotating protein sequences relies on the "inheritance through homology" based on the notion that similar sequences share similar functions and structures. This procedure consists in the assignment of sequences to a specific group of functionally related sequences which had been grouped through clustering techniques. The clustering procedure is based on suitable similarity rules, since predicting protein structure and function from sequence largely depends on the value of sequence identity. However, additional levels of complexity are due to multi-domain proteins, to proteins that share common domains but that do not necessarily share the same function, to the finding that different combinations of shared domains can lead to different biological roles. In the last part of this study I developed and validate a system that contributes to sequence annotation by taking advantage of a validated transfer through inheritance procedure of the molecular functions and of the structural templates. After a cross-genome comparison with the BLAST program, clusters were built on the basis of two stringent constraints on sequence identity and coverage of the alignment. The adopted measure explicity answers to the problem of multi-domain proteins annotation and allows a fine grain division of the whole set of proteomes used, that ensures cluster homogeneity in terms of sequence length. A high level of coverage of structure templates on the length of protein sequences within clusters ensures that multi-domain proteins when present can be templates for sequences of similar length. This annotation procedure includes the possibility of reliably transferring statistically validated functions and structures to sequences considering information available in the present data bases of molecular functions and structures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents a creative and practical approach to dealing with the problem of selection bias. Selection bias may be the most important vexing problem in program evaluation or in any line of research that attempts to assert causality. Some of the greatest minds in economics and statistics have scrutinized the problem of selection bias, with the resulting approaches – Rubin’s Potential Outcome Approach(Rosenbaum and Rubin,1983; Rubin, 1991,2001,2004) or Heckman’s Selection model (Heckman, 1979) – being widely accepted and used as the best fixes. These solutions to the bias that arises in particular from self selection are imperfect, and many researchers, when feasible, reserve their strongest causal inference for data from experimental rather than observational studies. The innovative aspect of this thesis is to propose a data transformation that allows measuring and testing in an automatic and multivariate way the presence of selection bias. The approach involves the construction of a multi-dimensional conditional space of the X matrix in which the bias associated with the treatment assignment has been eliminated. Specifically, we propose the use of a partial dependence analysis of the X-space as a tool for investigating the dependence relationship between a set of observable pre-treatment categorical covariates X and a treatment indicator variable T, in order to obtain a measure of bias according to their dependence structure. The measure of selection bias is then expressed in terms of inertia due to the dependence between X and T that has been eliminated. Given the measure of selection bias, we propose a multivariate test of imbalance in order to check if the detected bias is significant, by using the asymptotical distribution of inertia due to T (Estadella et al. 2005) , and by preserving the multivariate nature of data. Further, we propose the use of a clustering procedure as a tool to find groups of comparable units on which estimate local causal effects, and the use of the multivariate test of imbalance as a stopping rule in choosing the best cluster solution set. The method is non parametric, it does not call for modeling the data, based on some underlying theory or assumption about the selection process, but instead it calls for using the existing variability within the data and letting the data to speak. The idea of proposing this multivariate approach to measure selection bias and test balance comes from the consideration that in applied research all aspects of multivariate balance, not represented in the univariate variable- by-variable summaries, are ignored. The first part contains an introduction to evaluation methods as part of public and private decision process and a review of the literature of evaluation methods. The attention is focused on Rubin Potential Outcome Approach, matching methods, and briefly on Heckman’s Selection Model. The second part focuses on some resulting limitations of conventional methods, with particular attention to the problem of how testing in the correct way balancing. The third part contains the original contribution proposed , a simulation study that allows to check the performance of the method for a given dependence setting and an application to a real data set. Finally, we discuss, conclude and explain our future perspectives.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The research for this PhD project consisted in the application of the RFs analysis technique to different data-sets of teleseismic events recorded at temporary and permanent stations located in three distinct study regions: Colli Albani area, Northern Apennines and Southern Apennines. We found some velocity models to interpret the structures in these regions, which possess very different geologic and tectonics characteristics and therefore offer interesting case study to face. In the Colli Albani some of the features evidenced in the RFs are shared by all the analyzed stations: the Moho is almost flat and is located at about 23 km depth, and the presence of a relatively shallow limestone layer is a stable feature; contrariwise there are features which vary from station to station, indicating local complexities. Three seismic stations, close to the central part of the former volcanic edifice, display relevant anisotropic signatures­­­ with symmetry axes consistent with the emplacement of the magmatic chamber. Two further anisotropic layers are present at greater depth, in the lower crust and the upper mantle, respectively, with symmetry axes directions related to the evolution of the volcano complex. In Northern Apennines we defined the isotropic structure of the area, finding the depth of the Tyrrhenian (almost 25 km and flat) and Adriatic (40 km and dipping underneath the Apennines crests) Mohos. We determined a zone in which the two Mohos overlap, and identified an anisotropic body in between, involved in the subduction and going down with the Adiratic Moho. We interpreted the downgoing anisotropic layer as generated by post-subduction delamination of the top-slab layer, probably made of metamorphosed crustal rocks caught in the subduction channel and buoyantly rising toward the surface. In the Southern Apennines, we found the Moho depth for 16 seismic stations, and highlighted the presence of an anisotropic layer underneath each station, at about 15-20 km below the whole study area. The moho displays a dome-like geometry, as it is shallow (29 km) in the central part of the study area, whereas it deepens peripherally (down to 45 km); the symmetry axes of anisotropic layer, interpreted as a layer separating the upper and the lower crust, show a moho-related pattern, indicated by the foliation of the layer which is parallel to the Moho trend. Moreover, due to the exceptional seismic event occurred on April 6th next to L’Aquila town, we determined the Vs model for two station located next to the epicenter. An extremely high velocity body is found underneath AQU station at 4-10 km depth, reaching Vs of about 4 km/s, while this body is lacking underneath FAGN station. We compared the presence of this body with other recent works and found an anti-correlation between the high Vs body, the max slip patches and earthquakes distribution. The nature of this body is speculative since such high velocities are consistent with deep crust or upper mantle, but can be interpreted as a as high strength barrier of which the high Vs is a typical connotation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The work for the present thesis started in California, during my semester as an exchange student overseas. California is known worldwide for its seismicity and its effort in the earthquake engineering research field. For this reason, I immediately found interesting the Structural Dynamics Professor, Maria Q. Feng's proposal, to work on a pushover analysis of the existing Jamboree Road Overcrossing bridge. Concrete is a popular building material in California, and for the most part, it serves its functions well. However, concrete is inherently brittle and performs poorly during earthquakes if not reinforced properly. The San Fernando Earthquake of 1971 dramatically demonstrated this characteristic. Shortly thereafter, code writers revised the design provisions for new concrete buildings so to provide adequate ductility to resist strong ground shaking. There remain, nonetheless, millions of square feet of non-ductile concrete buildings in California. The purpose of this work is to perform a Pushover Analysis and compare the results with those of a Nonlinear Time-History Analysis of an existing bridge, located in Southern California. The analyses have been executed through the software OpenSees, the Open System for Earthquake Engineering Simulation. The bridge Jamboree Road Overcrossing is classified as a Standard Ordinary Bridge. In fact, the JRO is a typical three-span continuous cast-in-place prestressed post-tension box-girder. The total length of the bridge is 366 ft., and the height of the two bents are respectively 26,41 ft. and 28,41 ft.. Both the Pushover Analysis and the Nonlinear Time-History Analysis require the use of a model that takes into account for the nonlinearities of the system. In fact, in order to execute nonlinear analyses of highway bridges it is essential to incorporate an accurate model of the material behavior. It has been observed that, after the occurrence of destructive earthquakes, one of the most damaged elements on highway bridges is a column. To evaluate the performance of bridge columns during seismic events an adequate model of the column must be incorporated. Part of the work of the present thesis is, in fact, dedicated to the modeling of bents. Different types of nonlinear element have been studied and modeled, with emphasis on the plasticity zone length determination and location. Furthermore, different models for concrete and steel materials have been considered, and the selection of the parameters that define the constitutive laws of the different materials have been accurate. The work is structured into four chapters, to follow a brief overview of the content. The first chapter introduces the concepts related to capacity design, as the actual philosophy of seismic design. Furthermore, nonlinear analyses both static, pushover, and dynamic, time-history, are presented. The final paragraph concludes with a short description on how to determine the seismic demand at a specific site, according to the latest design criteria in California. The second chapter deals with the formulation of force-based finite elements and the issues regarding the objectivity of the response in nonlinear field. Both concentrated and distributed plasticity elements are discussed into detail. The third chapter presents the existing structure, the software used OpenSees, and the modeling assumptions and issues. The creation of the nonlinear model represents a central part in this work. Nonlinear material constitutive laws, for concrete and reinforcing steel, are discussed into detail; as well as the different scenarios employed in the columns modeling. Finally, the results of the pushover analysis are presented in chapter four. Capacity curves are examined for the different model scenarios used, and failure modes of concrete and steel are discussed. Capacity curve is converted into capacity spectrum and intersected with the design spectrum. In the last paragraph, the results of nonlinear time-history analyses are compared to those of pushover analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis introduces new processing techniques for computer-aided interpretation of ultrasound images with the purpose of supporting medical diagnostic. In terms of practical application, the goal of this work is the improvement of current prostate biopsy protocols by providing physicians with a visual map overlaid over ultrasound images marking regions potentially affected by disease. As far as analysis techniques are concerned, the main contributions of this work to the state-of-the-art is the introduction of deconvolution as a pre-processing step in the standard ultrasonic tissue characterization procedure to improve the diagnostic significance of ultrasonic features. This thesis also includes some innovations in ultrasound modeling, in particular the employment of a continuous-time autoregressive moving-average (CARMA) model for ultrasound signals, a new maximum-likelihood CARMA estimator based on exponential splines and the definition of CARMA parameters as new ultrasonic features able to capture scatterers concentration. Finally, concerning the clinical usefulness of the developed techniques, the main contribution of this research is showing, through a study based on medical ground truth, that a reduction in the number of sampled cores in standard prostate biopsy is possible, preserving the same diagnostic power of the current clinical protocol.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Southern Tyrrhenian subduction system shows a complex interaction among asthenospheric flow, subducting slab and overriding plate. To shed light on the deformations and mechanical properties of the slab and surrounding mantle, I investigated seismic anisotropy and attenuation properties through the subduction region. I used both teleseisms and slab earthquakes, analyzing shear-wave splitting on SKS and S phases, respectively. The fast polarization directions φ, and the delay time, δt, were retrieved using the method of Silver and Chan [1991. SKS and S φ reveal a complex anisotropy pattern across the subduction zone. SKS-rays sample primarily the sub-slab region showing rotation of fast directions following the curved shape of the slab and very strong anisotropy. S-rays sample mainly the slab, showing variable φ and a smaller δt. SKS and S splitting reveals a well developed toroidal flow at SW edge of the slab, while at its NE edge the pattern is not very clear. This suggests that the anisotropy is controlled by the slab rollback, responsible for about 100 km slab parallel φ in the sub-slab mantle. The slab is weakly anisotropic, suggesting the asthenosphere as main source of anisotropy. To investigate the physical properties of the slab and surrounding regions, I analyzed the seismic P and S wave attenuation. By inverting high-quality S-waves t* from slab earthquakes, 3D attenuation models down to 300 km were obtained. Attenuation results image the slab as low-attenuation body, but with heterogeneous QS and QP structure showing spot of high attenuation , between 100-200 km depth, which could be due dehydration associated to the slab metamorphism. A low QS anomaly is present in the mantle wedge beneath the Aeolian volcanic arc and could indicate mantle melting and slab dehydration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity. In addition to clinical usage, analysis of brain activity is gaining popularity in others recent �fields, i.e. Brain Computer Interfaces (BCI) and the study of cognitive processes. In this context, usage of classical solutions (e.g. f MRI, PET-CT) could be unfeasible, due to their low temporal resolution, high cost and limited portability. For these reasons alternative low cost techniques are object of research, typically based on simple recording hardware and on intensive data elaboration process. Typical examples are ElectroEncephaloGraphy (EEG) and Electrical Impedance Tomography (EIT), where electric potential at the patient's scalp is recorded by high impedance electrodes. In EEG potentials are directly generated from neuronal activity, while in EIT by the injection of small currents at the scalp. To retrieve meaningful insights on brain activity from measurements, EIT and EEG relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of the electric �field distribution therein. The inhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeo�ff between physical accuracy and technical feasibility, which currently severely limits the capabilities of these techniques. Moreover elaboration of data recorded requires usage of regularization techniques computationally intensive, which influences the application with heavy temporal constraints (such as BCI). This work focuses on the parallel implementation of a work-flow for EEG and EIT data processing. The resulting software is accelerated using multi-core GPUs, in order to provide solution in reasonable times and address requirements of real-time BCI systems, without over-simplifying the complexity and accuracy of the head models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synthetic Biology is a relatively new discipline, born at the beginning of the New Millennium, that brings the typical engineering approach (abstraction, modularity and standardization) to biotechnology. These principles aim to tame the extreme complexity of the various components and aid the construction of artificial biological systems with specific functions, usually by means of synthetic genetic circuits implemented in bacteria or simple eukaryotes like yeast. The cell becomes a programmable machine and its low-level programming language is made of strings of DNA. This work was performed in collaboration with researchers of the Department of Electrical Engineering of the University of Washington in Seattle and also with a student of the Corso di Laurea Magistrale in Ingegneria Biomedica at the University of Bologna: Marilisa Cortesi. During the collaboration I contributed to a Synthetic Biology project already started in the Klavins Laboratory. In particular, I modeled and subsequently simulated a synthetic genetic circuit that was ideated for the implementation of a multicelled behavior in a growing bacterial microcolony. In the first chapter the foundations of molecular biology are introduced: structure of the nucleic acids, transcription, translation and methods to regulate gene expression. An introduction to Synthetic Biology completes the section. In the second chapter is described the synthetic genetic circuit that was conceived to make spontaneously emerge, from an isogenic microcolony of bacteria, two different groups of cells, termed leaders and followers. The circuit exploits the intrinsic stochasticity of gene expression and intercellular communication via small molecules to break the symmetry in the phenotype of the microcolony. The four modules of the circuit (coin flipper, sender, receiver and follower) and their interactions are then illustrated. In the third chapter is derived the mathematical representation of the various components of the circuit and the several simplifying assumptions are made explicit. Transcription and translation are modeled as a single step and gene expression is function of the intracellular concentration of the various transcription factors that act on the different promoters of the circuit. A list of the various parameters and a justification for their value closes the chapter. In the fourth chapter are described the main characteristics of the gro simulation environment, developed by the Self Organizing Systems Laboratory of the University of Washington. Then, a sensitivity analysis performed to pinpoint the desirable characteristics of the various genetic components is detailed. The sensitivity analysis makes use of a cost function that is based on the fraction of cells in each one of the different possible states at the end of the simulation and the wanted outcome. Thanks to a particular kind of scatter plot, the parameters are ranked. Starting from an initial condition in which all the parameters assume their nominal value, the ranking suggest which parameter to tune in order to reach the goal. Obtaining a microcolony in which almost all the cells are in the follower state and only a few in the leader state seems to be the most difficult task. A small number of leader cells struggle to produce enough signal to turn the rest of the microcolony in the follower state. It is possible to obtain a microcolony in which the majority of cells are followers by increasing as much as possible the production of signal. Reaching the goal of a microcolony that is split in half between leaders and followers is comparatively easy. The best strategy seems to be increasing slightly the production of the enzyme. To end up with a majority of leaders, instead, it is advisable to increase the basal expression of the coin flipper module. At the end of the chapter, a possible future application of the leader election circuit, the spontaneous formation of spatial patterns in a microcolony, is modeled with the finite state machine formalism. The gro simulations provide insights into the genetic components that are needed to implement the behavior. In particular, since both the examples of pattern formation rely on a local version of Leader Election, a short-range communication system is essential. Moreover, new synthetic components that allow to reliably downregulate the growth rate in specific cells without side effects need to be developed. In the appendix are listed the gro code utilized to simulate the model of the circuit, a script in the Python programming language that was used to split the simulations on a Linux cluster and the Matlab code developed to analyze the data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis tackles the problem of the automated detection of the atmospheric boundary layer (BL) height, h, from aerosol lidar/ceilometer observations. A new method, the Bayesian Selective Method (BSM), is presented. It implements a Bayesian statistical inference procedure which combines in an statistically optimal way different sources of information. Firstly atmospheric stratification boundaries are located from discontinuities in the ceilometer back-scattered signal. The BSM then identifies the discontinuity edge that has the highest probability to effectively mark the BL height. Information from the contemporaneus physical boundary layer model simulations and a climatological dataset of BL height evolution are combined in the assimilation framework to assist this choice. The BSM algorithm has been tested for four months of continuous ceilometer measurements collected during the BASE:ALFA project and is shown to realistically diagnose the BL depth evolution in many different weather conditions. Then the BASE:ALFA dataset is used to investigate the boundary layer structure in stable conditions. Functions from the Obukhov similarity theory are used as regression curves to fit observed velocity and temperature profiles in the lower half of the stable boundary layer. Surface fluxes of heat and momentum are best-fitting parameters in this exercise and are compared with what measured by a sonic anemometer. The comparison shows remarkable discrepancies, more evident in cases for which the bulk Richardson number turns out to be quite large. This analysis supports earlier results, that surface turbulent fluxes are not the appropriate scaling parameters for profiles of mean quantities in very stable conditions. One of the practical consequences is that boundary layer height diagnostic formulations which mainly rely on surface fluxes are in disagreement to what obtained by inspecting co-located radiosounding profiles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

From the perspective of a new-generation opto-electronic technology based on organic semiconductors, a major objective is to achieve a deep and detailed knowledge of the structure-property relationships, in order to optimize the electronic, optical, and charge transport properties by tuning the chemical-physical characteristics of the compounds. The purpose of this dissertation is to contribute to such understanding, through suitable theoretical and computational studies. Precisely, the structural, electronic, optical, and charge transport characteristics of several promising organic materials recently synthesized are investigated by means of an integrated approach encompassing quantum-chemical calculations, molecular dynamics and kinetic Monte Carlo simulations. Particular care is addressed to the rationalization of optical and charge transport properties in terms of both intra- and intermolecular features. Moreover, a considerable part of this project involves the development of a home-made set of procedures and parts of software code required to assist the modeling of charge transport properties in the framework of the non-adiabatic hopping mechanism applied to organic crystalline materials. As a first part of my investigations, I mainly discuss the optical, electronic, and structural properties of several core-extended rylene derivatives, which can be regarded to as model compounds for graphene nanoribbons. Two families have been studied, consisting in bay-linked perylene bisimide oligomers and N-annulated rylenes. Beside rylene derivatives, my studies also concerned electronic and spectroscopic properties of tetracene diimides, quinoidal oligothiophenes, and oxygen doped picene. As an example of device application, I studied the structural characteristics governing the efficiency of resistive molecular memories based on a derivative of benzoquinone. Finally, as a second part of my investigations, I concentrate on the charge transport properties of perylene bisimides derivatives. Precisely, a comprehensive study of the structural and thermal effects on the charge transport of several core-twisted chlorinated and fluoro-alkylated perylene bisimide n-type semiconductors is presented.