955 resultados para straw coverage
Resumo:
Black-blood MR coronary vessel wall imaging may become a powerful tool for the quantitative and noninvasive assessment of atherosclerosis and positive arterial remodeling. Although dual-inversion recovery is currently the gold standard, optimal lumen-to-vessel wall contrast is sometimes difficult to obtain, and the time window available for imaging is limited due to competing requirements between blood signal nulling time and period of minimal myocardial motion. Further, atherosclerosis is a spatially heterogeneous disease, and imaging at multiple anatomic levels of the coronary circulation is mandatory. However, this requirement of enhanced volumetric coverage comes at the expense of scanning time. Phase-sensitive inversion recovery has shown to be very valuable for enhancing tissue-tissue contrast and for making inversion recovery imaging less sensitive to tissue signal nulling time. This work enables multislice black-blood coronary vessel wall imaging in a single breath hold by extending phase-sensitive inversion recovery to phase-sensitive dual-inversion recovery, by combining it with spiral imaging and yet relaxing constraints related to blood signal nulling time and period of minimal myocardial motion.
Resumo:
Besides polyurethanes and polyesters, phenolic and epoxy resins are the most prominent applications for technical lignins in thermosetting materials. To evaluate the potential application of lignin raw materials in phenol formaldehyde and epoxy resins, three types of alkaline lignins were characterized in terms of their structures and thermal properties. The lignin samples analyzed were kraft lignin (LIG-1), soda–rice straw lignin (LIG-2), and soda-wheat straw lignin (LIG-3). FTIR and 1H-NMR methods were used to determine their structure. Gel permeation chromatography (GPC) was used to determine the molecular weight distribution (MWD). Differential scanning calorimetry (DSC) was used to measure the glass transition temperature (Tg), and thermogravimetric analysis (TGA) to determine the thermal stability of lignin samples. Results showed that kraft lignin (LIG-1) has moderate hydroxyl-group content, is rich in G-type units, and has good thermal stability. These properties make it more suitable for direct use in phenol formaldehyde resins, and it is therefore a good raw material for this purpose. The alkaline soda-rice straw lignin (LIG-2) with a high hydroxyl-group content and excellent thermal stability is most suited to preparing lignin-based epoxy resin
Resumo:
BACKGROUND: Solexa/Illumina short-read ultra-high throughput DNA sequencing technology produces millions of short tags (up to 36 bases) by parallel sequencing-by-synthesis of DNA colonies. The processing and statistical analysis of such high-throughput data poses new challenges; currently a fair proportion of the tags are routinely discarded due to an inability to match them to a reference sequence, thereby reducing the effective throughput of the technology. RESULTS: We propose a novel base calling algorithm using model-based clustering and probability theory to identify ambiguous bases and code them with IUPAC symbols. We also select optimal sub-tags using a score based on information content to remove uncertain bases towards the ends of the reads. CONCLUSION: We show that the method improves genome coverage and number of usable tags as compared with Solexa's data processing pipeline by an average of 15%. An R package is provided which allows fast and accurate base calling of Solexa's fluorescence intensity files and the production of informative diagnostic plots.
Resumo:
Objective. To measure support for seasonal influenza vaccination requirements among US healthcare personnel (HCP) and its associations with attitudes regarding influenza and influenza vaccination and self-reported coverage by existing vaccination requirements. Design. Between June 1 and June 30, 2010, we surveyed a sample of US HCP ([Formula: see text]) recruited using an existing probability-based online research panel of participants representing the US general population as a sampling frame. Setting. General community. Participants. Eligible HCP who (1) reported having worked as medical doctors, health technologists, healthcare support staff, or other health practitioners or who (2) reported having worked in hospitals, ambulatory care facilities, long-term care facilities, or other health-related settings. Methods. We analyzed support for seasonal influenza vaccination requirements for HCP using proportion estimation and multivariable probit models. Results. A total of 57.4% (95% confidence interval, 53.3%-61.5%) of US HCP agreed that HCP should be required to be vaccinated for seasonal influenza. Support for mandatory vaccination was statistically significantly higher among HCP who were subject to employer-based influenza vaccination requirements, who considered influenza to be a serious disease, and who agreed that influenza vaccine was safe and effective. Conclusions. A majority of HCP support influenza vaccination requirements. Moreover, providing HCP with information about the safety of influenza vaccination and communicating that immunization of HCP is a patient safety issue may be important for generating staff support for influenza vaccination requirements.
Resumo:
Coronary magnetic resonance angiography (MRA) is a powerful noninvasive technique with high soft-tissue contrast for the visualization of the coronary anatomy without X-ray exposure. Due to the small dimensions and tortuous nature of the coronary arteries, a high spatial resolution and sufficient volumetric coverage have to be obtained. However, this necessitates scanning times that are typically much longer than one cardiac cycle. By collecting image data during multiple RR intervals, one can successfully acquire coronary MR angiograms. However, constant cardiac contraction and relaxation, as well as respiratory motion, adversely affect image quality. Therefore, sophisticated motion-compensation strategies are needed. Furthermore, a high contrast between the coronary arteries and the surrounding tissue is mandatory. In the present article, challenges and solutions of coronary imaging are discussed, and results obtained in both healthy and diseased states are reviewed. This includes preliminary data obtained with state-of-the-art techniques such as steady-state free precession (SSFP), whole-heart imaging, intravascular contrast agents, coronary vessel wall imaging, and high-field imaging. Simultaneously, the utility of electron beam computed tomography (EBCT) and multidetector computed tomography (MDCT) for the visualization of the coronary arteries is discussed.
Resumo:
The demand for research in the area of safety health and environmental management of nanotechnologies is present since a decade and identified by several landmark reports and studies. It is not the intention of this compendium to report on these as they are widely available. It is also not the intention to publish scientific papers and research results as this task is covered by scientific conferences and the peer reviewed press. The intention of the compendium is to bring together researchers, create synergy in their work, and establish links and communication between them mainly during the actual research phase before publication of results. Towards this purpose we find useful to give emphasis to communication of projects strategic aims, extensive coverage of specific work objectives and of methods used in research, strengthening human capacities and laboratories infrastructure, supporting collaboration for common goals and joint elaboration of future plans, without compromising scientific publication potential or IP Rights. These targets are far from being achieved with the publication in its present shape. We shall continue working, though, and hope with the assistance of the research community to make significant progress. We would like to stress that this sector is under development and progressing very fast, which might make some of the statements outdated or even obsolete. Nevertheless it is intended to provide a basis for the necessary future developments. [Ed.]
Resumo:
Annual Report of the hawk-i Board to the Governor
Resumo:
In-vitro fertilization: advantage and disadvantage of covering the costs of IVF/CSI by the health insurance in Switzerland The reimbursement of certain infertility treatments (stimulation with/without insemination) whereas IVF/ICSI is not leads patients with an indication of IVF to prefer treatments of low efficacy. The costs of multiple pregnancies issued by reimbursed or non-reimbursed fertility treatments are paid by the society. There should be measures to reduce these costs and to take the money used today to pay the complications of infertility treatments to reimburse IVF. The efficacy of such a system (single embryo transfer) has been proven in Belgium since several years. The dangers of complete reimbursement (IVF treatment in cases without any chances of success, only because it is for free) can be avoided by an Efficacy and Safety Board.
Resumo:
Human genetics has progressed at an unprecedented pace during the past 10 years. DNA microarrays currently allow screening of the entire human genome with high level of coverage and we are now entering the era of high-throughput sequencing. These remarkable technical advances are influencing the way medical research is conducted and have boosted our understanding of the structure of the human genome as well as of disease biology. In this context, it is crucial for clinicians to understand the main concepts and limitations of modern genetics. This review will describe key concepts in genetics, including the different types of genetic markers in the human genome, review current methods to detect DNA variation, describe major online public databases in genetics, explain key concepts in statistical genetics and finally present commonly used study designs in clinical and epidemiological research. This review will therefore concentrate on human genetic variation analysis.
Resumo:
We investigate the benefits and experimental feasibility of approaches enabling the shift from short (1.7kDa on average) peptides in bottom-up proteomics to about twice longer (~3.2kDa on average) peptides in the so-called extended bottom-up proteomics. Candida albicans secreted aspartic protease Sap9 has been selected for evaluation as an extended bottom-up proteomic-grade enzyme due to its suggested dibasic cleavage specificity and ease of production. We report the extensive characterization of Sap9 specificity and selectivity revealing that protein cleavage by Sap9 most often occurs in the vicinity of proximal basic amino acids, and in select cases also at basic and hydrophobic residues. Sap9 is found to cleave a large variety of proteins in a relatively short, ~1h, period of time and it is efficient in a broad pH range, including slightly acidic, e. g., pH5.5, conditions. Importantly, the resulting peptide mixtures contain representative peptides primarily in the target 3-7kDa range. The utility and advantages of this enzyme in routine analysis of protein mixtures are demonstrated and the limitations are discussed. Overall, Sap9 has a potential to become an enzyme of choice in an extended bottom-up proteomics, which is technically ready to complement the traditional bottom-up proteomics for improved targeted protein structural analysis and expanded proteome coverage. BIOLOGICAL SIGNIFICANCE: Advances in biological applications of mass spectrometry-based bottom-up proteomics are oftentimes limited by the extreme complexity of biological samples, e.g., proteomes or protein complexes. One of the reasons for it is in the complexity of the mixtures of enzymatically (most often using trypsin) produced short (<3kDa) peptides, which may exceed the analytical capabilities of liquid chromatography and mass spectrometry. Information on localization of protein modifications may also be affected by the small size of typically produced peptides. On the other hand, advances in high-resolution mass spectrometry and liquid chromatography have created an intriguing opportunity of improving proteome analysis by gradually increasing the size of enzymatically-derived peptides in MS-based bottom-up proteomics. Bioinformatics has already confirmed the envisioned advantages of such approach. The remaining bottle-neck is an enzyme that could produce longer peptides. Here, we report on the characterization of a possible candidate enzyme, Sap9, which may be considered for producing longer, e.g., 3-7kDa, peptides and lead to a development of extended bottom-up proteomics.
Resumo:
ABSTRACT: Identification of small polymorphisms from next generation sequencing short read data is relatively easy, but detection of larger deletions is less straightforward. Here, we analyzed four divergent Arabidopsis accessions and found that intersection of absent short read coverage with weak tiling array hybridization signal reliably flags deletions. Interestingly, individual deletions were frequently observed in two or more of the accessions examined, suggesting that variation in gene content partly reflects a common history of deletion events.
Resumo:
Investigative report produced by Iowa Citizens' Aide/Ombudsman
Resumo:
Despite the recent advances in structural analysis of monoclonal antibodies with bottom-up, middle-down, and top-down mass spectrometry (MS), further improvements in analysis accuracy, depth, and speed are needed. The remaining challenges include quantitatively accurate assignment of post-translational modifications, reduction of artifacts introduced during sample preparation, increased sequence coverage per liquid chromatography (LC) MS experiment, and ability to extend the detailed characterization to simple antibody cocktails and more complex antibody mixtures. Here, we evaluate the recently introduced extended bottom-up proteomics (eBUP) approach based on proteolysis with secreted aspartic protease 9, Sap9, for analysis of monoclonal antibodies. Key findings of the Sap9-based proteomics analysis of a single antibody include: (i) extensive antibody sequence coverage with up to 100% for the light chain and up to 99-100% for the heavy chain in a single LC-MS run; (ii) connectivity of complementarity-determining regions (CDRs) via Sap9-produced large proteolytic peptides (3.4 kDa on average) containing up to two CDRs per peptide; (iii) reduced artifact introduction (e. g., deamidation) during proteolysis with Sap9 compared to conventional bottom-up proteomics workflows. The analysis of a mixture of six antibodies via Sap9-based eBUP produced comparable results. Due to the reasons specified above, Sap9-produced proteolytic peptides improve the identification confidence of antibodies from the mixtures compared to conventional bottom-up proteomics dealing with shorter proteolytic peptides.
Resumo:
MicroRNAs (miRNA) are recognized posttranscriptional gene repressors involved in the control of almost every biological process. Allelic variants in these regions may be an important source of phenotypic diversity and contribute to disease susceptibility. We analyzed the genomic organization of 325 human miRNAs (release 7.1, miRBase) to construct a panel of 768 single-nucleotide polymorphisms (SNPs) covering approximately 1 Mb of genomic DNA, including 131 isolated miRNAs (40%) and 194 miRNAs arranged in 48 miRNA clusters, as well as their 5-kb flanking regions. Of these miRNAs, 37% were inside known protein-coding genes, which were significantly associated with biological functions regarding neurological, psychological or nutritional disorders. SNP coverage analysis revealed a lower SNP density in miRNAs compared with the average of the genome, with only 24 SNPs located in the 325 miRNAs studied. Further genotyping of 340 unrelated Spanish individuals showed that more than half of the SNPs in miRNAs were either rare or monomorphic, in agreement with the reported selective constraint on human miRNAs. A comparison of the minor allele frequencies between Spanish and HapMap population samples confirmed the applicability of this SNP panel to the study of complex disorders among the Spanish population, and revealed two miRNA regions, hsa-mir-26a-2 in the CTDSP2 gene and hsa-mir-128-1 in the R3HDM1 gene, showing geographical allelic frequency variation among the four HapMap populations, probably because of differences in natural selection. The designed miRNA SNP panel could help to identify still hidden links between miRNAs and human disease.
Resumo:
Background: A number of studies have used protein interaction data alone for protein function prediction. Here, we introduce a computational approach for annotation of enzymes, based on the observation that similar protein sequences are more likely to perform the same function if they share similar interacting partners. Results: The method has been tested against the PSI-BLAST program using a set of 3,890 protein sequences from which interaction data was available. For protein sequences that align with at least 40% sequence identity to a known enzyme, the specificity of our method in predicting the first three EC digits increased from 80% to 90% at 80% coverage when compared to PSI-BLAST. Conclusion: Our method can also be used in proteins for which homologous sequences with known interacting partners can be detected. Thus, our method could increase 10% the specificity of genome-wide enzyme predictions based on sequence matching by PSI-BLAST alone.