990 resultados para spectral simulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present broad-band pulsation and spectral characteristics of the accreting X-ray pulsar OAO 1657-415 with a 2.2 d long Suzaku observation carried out covering its orbital phase range similar to 0.12-0.34, with respect to the mid-eclipse. During the last third of the observation, the X-ray count rate in both the X-ray Imaging Spectrometer (XIS) and the HXD-PIN instruments increased by a factor of more than 10. During this observation, the hardness ratio also changed by a factor of more than 5, uncorrelated with the intensity variations. In two segments of the observation, lasting for similar to 30-50 ks, the hardness ratio is very high. In these segments, the spectrum shows a large absorption column density and correspondingly large equivalent widths of the iron fluorescence lines. We found no conclusive evidence for the presence of a cyclotron line in the broad-band X-ray spectrum with Suzaku. The pulse profile, especially in the XIS energy band, shows evolution with time but not so with energy. We discuss the nature of the intensity variations, and variations of the absorption column density and emission lines during the duration of the observation as would be expected due to a clumpy stellar wind of the supergiant companion star. These results indicate that OAO 1657-415 has characteristics intermediate to the normal supergiant systems and the systems that show fast X-ray transient phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider two variants of the classical gossip algorithm. The first variant is a version of asynchronous stochastic approximation. We highlight a fundamental difficulty associated with the classical asynchronous gossip scheme, viz., that it may not converge to a desired average, and suggest an alternative scheme based on reinforcement learning that has guaranteed convergence to the desired average. We then discuss a potential application to a wireless network setting with simultaneous link activation constraints. The second variant is a gossip algorithm for distributed computation of the Perron-Frobenius eigenvector of a nonnegative matrix. While the first variant draws upon a reinforcement learning algorithm for an average cost controlled Markov decision problem, the second variant draws upon a reinforcement learning algorithm for risk-sensitive control. We then discuss potential applications of the second variant to ranking schemes, reputation networks, and principal component analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a simulation-based algorithm for computing the optimal pricing policy for a product under uncertain demand dynamics. We consider a parameterized stochastic differential equation (SDE) model for the uncertain demand dynamics of the product over the planning horizon. In particular, we consider a dynamic model that is an extension of the Bass model. The performance of our algorithm is compared to that of a myopic pricing policy and is shown to give better results. Two significant advantages with our algorithm are as follows: (a) it does not require information on the system model parameters if the SDE system state is known via either a simulation device or real data, and (b) as it works efficiently even for high-dimensional parameters, it uses the efficient smoothed functional gradient estimator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single fluid schemes that rely on an interface function for phase identification in multicomponent compressible flows are widely used to study hydrodynamic flow phenomena in several diverse applications. Simulations based on standard numerical implementation of these schemes suffer from an artificial increase in the width of the interface function owing to the numerical dissipation introduced by an upwind discretization of the governing equations. In addition, monotonicity requirements which ensure that the sharp interface function remains bounded at all times necessitate use of low-order accurate discretization strategies. This results in a significant reduction in accuracy along with a loss of intricate flow features. In this paper we develop a nonlinear transformation based interface capturing method which achieves superior accuracy without compromising the simplicity, computational efficiency and robustness of the original flow solver. A nonlinear map from the signed distance function to the sigmoid type interface function is used to effectively couple a standard single fluid shock and interface capturing scheme with a high-order accurate constrained level set reinitialization method in a way that allows for oscillation-free transport of the sharp material interface. Imposition of a maximum principle, which ensures that the multidimensional preconditioned interface capturing method does not produce new maxima or minima even in the extreme events of interface merger or breakup, allows for an explicit determination of the interface thickness in terms of the grid spacing. A narrow band method is formulated in order to localize computations pertinent to the preconditioned interface capturing method. Numerical tests in one dimension reveal a significant improvement in accuracy and convergence; in stark contrast to the conventional scheme, the proposed method retains its accuracy and convergence characteristics in a shifted reference frame. Results from the test cases in two dimensions show that the nonlinear transformation based interface capturing method outperforms both the conventional method and an interface capturing method without nonlinear transformation in resolving intricate flow features such as sheet jetting in the shock-induced cavity collapse. The ability of the proposed method in accounting for the gravitational and surface tension forces besides compressibility is demonstrated through a model fully three-dimensional problem concerning droplet splash and formation of a crownlike feature. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure and spectral properties of hexagonal NiS have been studied in the high temperature paramagnetic phase and low temperature anti-ferromagnetic phase. The calculations have been performed using charge self-consistent density-functional theory in local density approximation combined with dynamical mean-field theory (LDA+DMFT). The photoemission spectra (PES) and optical properties have been computed and compared with the experimental data. Our results show that the dynamical correlation effects are important to understand the spectral and optical properties of NiS. These effects have been analyzed in detail by means of the computed real and imaginary part of the self-energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An organic molecule-o-phenylene diamine (OPD)-is selected as an aldehyde sensing material. It is studied for selectivity to aldehyde vapours both by experiment and simulation. A chemiresistor based sensor for detection of aldehyde vapours is fabricated. An o-phenylene diamine-carbon black composite is used as the sensing element. The amine groups in the OPD would interact with the carbonyl groups of the aldehydes. The selectivity and cross-sensitivity of the OPD-CB sensor to VOCs aldehyde, ketone and alcohol-are studied. The sensor shows good response to aldehydes compared to other VOCs. The higher response for aldehydes is attributed to the interaction of the carbonyl oxygen of aldehydes with-NH2 groups of OPD. The surface morphology of the sensing element is studied by scanning electron microscopy. The OPD-CB sensor is responsive to 10 ppm of formaldehyde. The interaction of the VOCs with the OPD-CB nanocomposite is investigated by molecular dynamics studies. The interaction energies of the analyte with the OPD-CB nanocomposite were calculated. It is observed that the interaction energies for aldehydes are higher than those for other analytes. Thus the OPD-CB sensor shows selectivity to aldehydes. The simulated radial distribution function is calculated for the O-H pair of analyte and OPD which further supports the finding that the amine groups are involved in the interaction. These results suggest that it is important and easy to identify appropriate sensing materials based on the understanding of analyte interaction properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study simulates a two-stage silica gel + water adsorption desalination (AD) and chiller system. The adsorber system thermally compresses the low pressure steam generated in the evaporator to the condenser pressure in two stages. Unlike a standalone adsorption chiller unit which operates in a closed cycle the present system is an open cycle wherein the condensed desalinated water is not fed back to the evaporator. The mathematical relations formulated in the current study are based on conservation of mass and energy along with isotherm relation and kinetics for RD-type silica gel + water pair. Various constitutive relations for each component namely the evaporator, adsorber and condenser are integrated in the model. The dynamics of heat exchanger are modeled using LMTD method, and LDF model is used to predict the dynamic characteristic of the adsorber bed. The system performance indicators namely, specific cooling capacity (SCC), specific daily water production (SDWP) and coefficient of performance (COP) are used as objective functions to optimize the system. The novelty of the present work is in introduction of inter-stage pressure as a new parameter for optimizing the two-stage operation of AD chiller system. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase diagram studies of succinonitrile-vanillin system show the formation of 2:1 congruent melting type compound. Crystallization velocities of pure components, succinonitrile-vanillin complex, and two eutectics have been determined at different undercoolings. On the basis of heat of fusion measurements, excess thermodynamic functions have been calculated. Microstructural studies revealed that impurities modify the morphology. FTIR spectral studies and computer simulation have shown the existence of hydrogen bonding in the eutectics and the congruent melting compound. On the basis of experimental results, the mechanism of formation of eutectics and its solidification behavior are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new Hessian estimator based on the simultaneous perturbation procedure, that requires three system simulations regardless of the parameter dimension. We then present two Newton-based simulation optimization algorithms that incorporate this Hessian estimator. The two algorithms differ primarily in the manner in which the Hessian estimate is used. Both our algorithms do not compute the inverse Hessian explicitly, thereby saving on computational effort. While our first algorithm directly obtains the product of the inverse Hessian with the gradient of the objective, our second algorithm makes use of the Sherman-Morrison matrix inversion lemma to recursively estimate the inverse Hessian. We provide proofs of convergence for both our algorithms. Next, we consider an interesting application of our algorithms on a problem of road traffic control. Our algorithms are seen to exhibit better performance than two Newton algorithms from a recent prior work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in this paper involves the stochastic finite element analysis of composite-epoxy adhesive lap joints using Monte Carlo simulation. A set of composite adhesive lap joints were prepared and loaded till failure to obtain their strength. The peel and shear strain in the bond line region at different levels of load were obtained using digital image correlation (DIC). The corresponding stresses were computed assuming a plane strain condition. The finite element model was verified by comparing the numerical and experimental stresses. The stresses exhibited a similar behavior and a good correlation was obtained. Further, the finite element model was used to perform the stochastic analysis using Monte Carlo simulation. The parameters influencing stress distribution were provided as a random input variable and the resulting probabilistic variation of maximum peel and shear stresses were studied. It was found that the adhesive modulus and bond line thickness had significant influence on the maximum stress variation. While the adherend thickness had a major influence, the effect of variation in longitudinal and shear modulus on the stresses was found to be little. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tetrablock, roughly speaking, is the set of all linear fractional maps that map the open unit disc to itself. A formal definition of this inhomogeneous domain is given below. This paper considers triples of commuting bounded operators (A,B,P) that have the tetrablock as a spectral set. Such a triple is named a tetrablock contraction. The motivation comes from the success of model theory in another inhomogeneous domain, namely, the symmetrized bidisc F. A pair of commuting bounded operators (S,P) with Gamma as a spectral set is called a Gamma-contraction, and always has a dilation. The two domains are related intricately as the Lemma 3.2 below shows. Given a triple (A, B, P) as above, we associate with it a pair (F-1, F-2), called its fundamental operators. We show that (A,B,P) dilates if the fundamental operators F-1 and F-2 satisfy certain commutativity conditions. Moreover, the dilation space is no bigger than the minimal isometric dilation space of the contraction P. Whether these commutativity conditions are necessary, too, is not known. what we have shown is that if there is a tetrablock isometric dilation on the minimal isometric dilation space of P. then those commutativity conditions necessarily get imposed on the fundamental operators. En route, we decipher the structure of a tetrablock unitary (this is the candidate as the dilation triple) and a tertrablock isometry (the restriction of a tetrablock unitary to a joint invariant sub-space). We derive new results about r-contractions and apply them to tetrablock contractions. The methods applied are motivated by 11]. Although the calculations are lengthy and more complicated, they beautifully reveal that the dilation depends on the mutual relationship of the two fundamental operators, so that certain conditions need to be satisfied. The question of whether all tetrablock contractions dilate or not is unresolved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wavelet spectral finite element (WSFE) model is developed for studying transient dynamics and wave propagation in adhesively bonded composite joints. The adherands are formulated as shear deformable beams using the first order shear deformation theory (FSDT) to obtain accurate results for high frequency wave propagation. Equations of motion governing wave motion in the bonded beams are derived using Hamilton's principle. The adhesive layer is modeled as a line of continuously distributed tension/compression and shear springs. Daubechies compactly supported wavelet scaling functions are used to transform the governing partial differential equations from time domain to frequency domain. The dynamic stiffness matrix is derived under the spectral finite element framework relating the nodal forces and displacements in the transformed frequency domain. Time domain results for wave propagation in a lap joint are validated with conventional finite element simulations using Abaqus. Frequency domain spectrum and dispersion relation results are presented and discussed. The developed WSFE model yields efficient and accurate analysis of wave propagation in adhesively-bonded composite joints. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the site response characteristics of Kachchh rift basin over the meizoseismal area of the 2001, Mw 7.6, Bhuj (NW India) earthquake using the spectral ratio of the horizontal and vertical components of ambient vibrations. Using the available knowledge on the regional geology of Kachchh and well documented ground responses from the earthquake, we evaluated the H/V curves pattern across sediment filled valleys and uplifted areas generally characterized by weathered sandstones. Although our HIV curves showed a largely fuzzy nature, we found that the hierarchical clustering method was useful for comparing large numbers of response curves and identifying the areas with similar responses. Broad and plateau shaped peaks of a cluster of curves within the valley region suggests the possibility of basin effects within valley. Fundamental resonance frequencies (f(0)) are found in the narrow range of 0.1-2.3 Hz and their spatial distribution demarcated the uplifted regions from the valleys. In contrary, low HIV peak amplitudes (A(0) = 2-4) were observed on the uplifted areas and varying values (2-9) were found within valleys. Compared to the amplification factors, the liquefaction indices (kg) were able to effectively indicate the areas which experienced severe liquefaction. The amplification ranges obtained in the current study were found to be comparable to those obtained from earthquake data for a limited number of seismic stations located on uplifted areas; however the values on the valley region may not reflect their true amplification potential due to basin effects. Our study highlights the practical usefulness as well as limitations of the HIV method to study complex geological settings as Kachchh. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents a simulation study of loose cylindrically shaped particles packed within a copper plate and aluminum fins. The model presented solves coupled heat and mass transfer equations using the finite volume method based on ANSY S FLUENT medium. Three different arrangements of cylindrical particles are considered. The model is validated with experimental data. It is found that the arrangements which represented monolayer configurations are only marginally better in heat transfer and uptake efficiency than the tri-layer configuration in the presence of fins. However, there is an appreciable difference in the uptake curve between monoand tri-layer configurations in the absence of fins. Finally, it is found that the fin pitch also plays an important role in determining the time constant for the adsorber design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prime movers and refrigerators based on thermoacoustics have gained considerable importance toward practical applications in view of the absence of moving components, reasonable efficiency, use of environmental friendly working fluids, etc. Devices such as twin Standing Wave ThermoAcoustic Prime Mover (SWTAPM), Traveling Wave ThermoAcoustic Prime Mover (TWTAPM) and thermoacoustically driven Standing Wave ThermoAcoustic Refrigerator (SWTAR) have been studied by researchers. The numerical modeling and simulation play a vital role in their development. In our efforts to build the above thermoacoustic systems, we have carried out numerical analysis using the procedures of CFD on the above systems. The results of the analysis are compared with those of DeltaEC (freeware from LANL, USA) simulations and the experimental results wherever possible. For the CFD analysis commercial code Fluent 6.3.26 has been used along with the necessary boundary conditions for different working fluids at various average pressures. The results of simulation indicate that choice of the working fluid and the average pressure are critical to the performance of the above thermoacoustic devices. Also it is observed that the predictions through the CFD analysis are closer to the experimental results in most cases, compared to those of DeltaEC simulations. (C) 2015 Elsevier Ltd. All rights reserved.