905 resultados para sensory nerve conduction
Resumo:
Food suppliers currently measure apple quality considering basic pomological descriptors. Sensory analysis is expensive, does not permit to analyse many samples, and cannot be implemented for measuring quality properties in real time. However, sensory analysis is the best way to precisely describe food eating quality, since it is able to define, measure, and explain what is really perceivable by human senses and using a language that closely reflects the consumers’ perception. On the basis of such observations, we developed a detailed protocol for apple sensory profiling by descriptive sensory analysis and instrumental measurements. The collected sensory data were validated by applying rigorous scientific criteria for sensory analysis. The method was then applied for studying sensory properties of apples and their changes in relation to different pre- and post-harvest factors affecting fruit quality, and demonstrated to be able to discriminate fruit varieties and to highlight differences in terms of sensory properties. The instrumental measurements confirmed such results. Moreover, the correlation between sensory and instrumental data was studied, and a new effective approach was defined for the reliable prediction of sensory properties by instrumental characterisation. It is therefore possible to propose the application of this sensory-instrumental tool to all the stakeholders involved in apple production and marketing, to have a reliable description of apple fruit quality.
Resumo:
In the central nervous system (CNS), oligodendrocytes form the multilamellar and compacted myelin sheath by spirally wrapping around defined axons with their specialised plasma membrane. Myelin is crucial for the rapid saltatory conduction of nerve impulses and for the preservation of axonal integrity. The absence of the major myelin component Myelin Basic Protein (MBP) results in an almost complete failure to form compact myelin in the CNS. The mRNA of MBP is sorted to cytoplasmic RNA granules and transported to the distal processes of oligodendrocytes in a translationally silent state. A main mediator of MBP mRNA localisation is the trans-acting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 which binds to the cis-acting A2 response element (A2RE) in the 3’UTR of MBP mRNA. A signalling cascade had been identified that triggers local translation of MBP at the axon-glial contact site, involving the neuronal cell adhesion molecule (CAM) L1, the oligodendroglial plasma membrane-tethered Fyn kinase and Fyn-dependent phosphorylation of hnRNP A2. This model was confirmed here, showing that L1 stimulates Fyn-dependent phosphorylation of hnRNP A2 and a remodelling of A2-dependent RNA granule structures. Furthermore, the RNA helicase DDX5 was confirmed here acting together with hnRNP A2 in cytoplasmic RNA granules and is possibly involved in MBP mRNA granule dynamics.rnLack of non-receptor tyrosine kinase Fyn activity leads to reduced levels of MBP and hypomyelination in the forebrain. The multiadaptor protein p130Cas and the RNA-binding protein hnRNP F were verified here as additional targets of Fyn in oligodendrocytes. The findings point at roles of p130Cas in the regulation of Fyn-dependent process outgrowth and signalling cascades ensuring cell survival. HnRNP F was identified here as a novel constituent of oligodendroglial cytoplasmic RNA granules containing hnRNP A2 and MBP mRNA. Moreover, it was found that hnRNP F plays a role in the post-transcriptional regulation of MBP mRNA and that defined levels of hnRNP F are required to facilitate efficient synthesis of MBP. HnRNP F appears to be directly phosphorylated by Fyn kinase what presumably contributes to the initiation of translation of MBP mRNA at the plasma membrane.rnFyn kinase signalling thus affects many aspects of oligodendroglial physiology contributing to myelination. Post-transcriptional control of the synthesis of the essential myelin protein MBP by Fyn targets is particularly important. Deregulation of these Fyn-dependent pathways could thus negatively influence disorders involving the white matter of the nervous system.rnrn
Resumo:
A field of computational neuroscience develops mathematical models to describe neuronal systems. The aim is to better understand the nervous system. Historically, the integrate-and-fire model, developed by Lapique in 1907, was the first model describing a neuron. In 1952 Hodgkin and Huxley [8] described the so called Hodgkin-Huxley model in the article “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve”. The Hodgkin-Huxley model is one of the most successful and widely-used biological neuron models. Based on experimental data from the squid giant axon, Hodgkin and Huxley developed their mathematical model as a four-dimensional system of first-order ordinary differential equations. One of these equations characterizes the membrane potential as a process in time, whereas the other three equations depict the opening and closing state of sodium and potassium ion channels. The membrane potential is proportional to the sum of ionic current flowing across the membrane and an externally applied current. For various types of external input the membrane potential behaves differently. This thesis considers the following three types of input: (i) Rinzel and Miller [15] calculated an interval of amplitudes for a constant applied current, where the membrane potential is repetitively spiking; (ii) Aihara, Matsumoto and Ikegaya [1] said that dependent on the amplitude and the frequency of a periodic applied current the membrane potential responds periodically; (iii) Izhikevich [12] stated that brief pulses of positive and negative current with different amplitudes and frequencies can lead to a periodic response of the membrane potential. In chapter 1 the Hodgkin-Huxley model is introduced according to Izhikevich [12]. Besides the definition of the model, several biological and physiological notes are made, and further concepts are described by examples. Moreover, the numerical methods to solve the equations of the Hodgkin-Huxley model are presented which were used for the computer simulations in chapter 2 and chapter 3. In chapter 2 the statements for the three different inputs (i), (ii) and (iii) will be verified, and periodic behavior for the inputs (ii) and (iii) will be investigated. In chapter 3 the inputs are embedded in an Ornstein-Uhlenbeck process to see the influence of noise on the results of chapter 2.
Resumo:
The round window placement of a floating mass transducer (FMT) is a new approach for coupling an implantable hearing system to the cochlea. We evaluated the vibration transfer to the cochlear fluids of an FMT placed at the round window (rwFMT) with special attention to the role of bone conduction. A posterior tympanotomy was performed on eleven ears of seven human whole head specimens. Several rwFMT setups were examined using laser Doppler vibrometry measurements at the stapes and the promontory. In three ears, the vibrations of a bone anchored hearing aid (BAHA) and an FMT fixed to the promontory (pFMT) were compared to explore the role of bone conduction. Vibration transmission to the measuring point at the stapes was best when the rwFMT was perpendicularly placed in the round window and underlayed with connective tissue. Fixation of the rwFMT to the round window exhibited significantly lower vibration transmission. Although measurable, bone conduction from the pFMT was much lower than that of the BAHA. Our results suggest that the rwFMT does not act as a small bone anchored hearing aid, but instead, acts as a direct vibratory stimulator of the round window membrane.
Resumo:
BACKGROUND: Loss-of-function mutations in SCN5A, the gene encoding Na(v)1.5 Na+ channel, are associated with inherited cardiac conduction defects and Brugada syndrome, which both exhibit variable phenotypic penetrance of conduction defects. We investigated the mechanisms of this heterogeneity in a mouse model with heterozygous targeted disruption of Scn5a (Scn5a(+/-) mice) and compared our results to those obtained in patients with loss-of-function mutations in SCN5A. METHODOLOGY/PRINCIPAL FINDINGS: Based on ECG, 10-week-old Scn5a(+/-) mice were divided into 2 subgroups, one displaying severe ventricular conduction defects (QRS interval>18 ms) and one a mild phenotype (QRS< or = 18 ms; QRS in wild-type littermates: 10-18 ms). Phenotypic difference persisted with aging. At 10 weeks, the Na+ channel blocker ajmaline prolonged QRS interval similarly in both groups of Scn5a(+/-) mice. In contrast, in old mice (>53 weeks), ajmaline effect was larger in the severely affected subgroup. These data matched the clinical observations on patients with SCN5A loss-of-function mutations with either severe or mild conduction defects. Ventricular tachycardia developed in 5/10 old severely affected Scn5a(+/-) mice but not in mildly affected ones. Correspondingly, symptomatic SCN5A-mutated Brugada patients had more severe conduction defects than asymptomatic patients. Old severely affected Scn5a(+/-) mice but not mildly affected ones showed extensive cardiac fibrosis. Mildly affected Scn5a(+/-) mice had similar Na(v)1.5 mRNA but higher Na(v)1.5 protein expression, and moderately larger I(Na) current than severely affected Scn5a(+/-) mice. As a consequence, action potential upstroke velocity was more decreased in severely affected Scn5a(+/-) mice than in mildly affected ones. CONCLUSIONS: Scn5a(+/-) mice show similar phenotypic heterogeneity as SCN5A-mutated patients. In Scn5a(+/-) mice, phenotype severity correlates with wild-type Na(v)1.5 protein expression.
Resumo:
In this exploratory study we evaluated sensitivity and target specificity of sinuvertebral nerve block (SVNB) for the diagnosis of lumbar diskogenic pain. Diskography has been the diagnostic gold standard. Fifteen patients with positive diskography underwent SVNB via interlaminar approach to the posterior aspect of the disk. Success was defined as > or = 80% pain reduction or excellent relief of physical restrictions after the block. The sensitivity was 73.3% (95% CI: 50.9%-95.7%). The target specificity was 40% (15.2%-64.8%). The results indicate that SVNB cannot yet replace diskography but encourage future studies to improve its target specificity.
Resumo:
Atrioventricular (AV) conduction impairment is well described after surgical aortic valve replacement, but little is known in patients undergoing transcatheter aortic valve implantation (TAVI). We assessed AV conduction and need for a permanent pacemaker in patients undergoing TAVI with the Medtronic CoreValve Revalving System (MCRS) or the Edwards Sapien Valve (ESV). Sixty-seven patients without pre-existing permanent pacemaker were included in the study. Forty-one patients (61%) and 26 patients (39%) underwent successful TAVI with the MCRS and ESV, respectively. Complete AV block occurred in 15 patients (22%), second-degree AV block in 4 (6%), and new left bundle branch block in 15 (22%), respectively. A permanent pacemaker was implanted in 23 patients (34%). Overall PR interval and QRS width increased significantly after the procedure (p <0.001 for the 2 comparisons). Implantation of the MCRS compared to the ESV resulted in a trend toward a higher rate of new left bundle branch block and complete AV block (29% vs 12%, p = 0.09 for the 2 comparisons). During follow-up, complete AV block resolved in 64% of patients. In multivariable regression analysis pre-existing right bundle branch block was the only independent predictor of complete AV block after TAVI (relative risk 7.3, 95% confidence interval 2.4 to 22.2). In conclusion, TAVI is associated with impairment of AV conduction in a considerable portion of patients, patients with pre-existing right bundle branch block are at increased risk of complete AV block, and complete AV block resolves over time in most patients.
Resumo:
BACKGROUND: Local anaesthetic blocks of the greater occipital nerve (GON) are frequently performed in different types of headache, but no selective approaches exist. Our cadaver study compares the sonographic visibility of the nerve and the accuracy and specificity of ultrasound-guided injections at two different sites. METHODS: After sonographic measurements in 10 embalmed cadavers, 20 ultrasound-guided injections of the GON were performed with 0.1 ml of dye at the classical site (superior nuchal line) followed by 20 at a newly described site more proximal (C2, superficial to the obliquus capitis inferior muscle). The spread of dye and coloration of nerve were evaluated by dissection. RESULTS: The median sonographic diameter of the GON was 4.2 x 1.4 mm at the classical and 4.0 x 1.8 mm at the new site. The nerves were found at a median depth of 8 and 17.5 mm, respectively. In 16 of 20 in the classical approach and 20 of 20 in the new approach, the nerve was successfully coloured with the dye. This corresponds to a block success rate of 80% (95% confidence interval: 58-93%) vs 100% (95% confidence interval: 86-100%), which is statistically significant (McNemar's test, P=0.002). CONCLUSIONS: Our findings confirm that the GON can be visualized using ultrasound both at the level of the superior nuchal line and C2. This newly described approach superficial to the obliquus capitis inferior muscle has a higher success rate and should allow a more precise blockade of the nerve.
Resumo:
Our study group recently evaluated an ED(95) local anaesthetic volume of 0.11 ml.mm(-2) cross-sectional nerve area for the ulnar nerve. This prospective, randomised, double-blind crossover study investigated whether this volume is sufficient for brachial plexus blocks at the axillary level. Ten volunteers received an ultrasonographic guided axillary brachial plexus block either with 0.11 ('low' volume) or 0.4 ('high' volume) ml.mm(-2) cross-sectional nerve area with mepivacaine 1%. The mean (SD) volume was in the low volume group 4.0 (1.0) and 14.8 (3.8) ml in the high volume group. The success rate for the individual nerve blocks was 27 out of 30 in the low volume group (90%) and 30 out of 30 in the high volume group (100%), resulting in 8 out of 10 (80%) vs 10 out of 10 (100%) complete blocks in the low vs the high volume groups, respectively (NS). The mean (SD) sensory onset time was 25.0 (14.8) min in the low volume group and 15.8 (6.8) min in the high volume group (p < 0.01). The mean (SD) duration of sensory block was 125 (38) min in the low volume group and 152 (70) min in the high volume group (NS). This study confirms our previous published ED(95) volume for mepivacaine 1% to block peripheral nerves. The volume of local anaesthetic has some influence on the sensory onset time.
Resumo:
Retrospective case-referent study.