994 resultados para semiconductors
Resumo:
Different fluoride materials are used as gate dielectrics to fabricate copper phthalocyanine (CuPc) thin film. transistors (OTFTs). The fabricated devices exhibit good electrical characteristics and the mobility is found to be dependent on the gate voltage from 10(-3) to 10(-1) cm(2) V(-1)s(-1). The observed noticeable electron injection at the drain electrode is of great significance in achieving ambipolar OTFTs. The same method for formation of organic semiconductors and gate dielectric films greatly simplifies the fabrication process. This provides a convenient way to produce high-performance OTFTs on a large scale and should be useful for integration in organic displays.
Resumo:
Distributed Bragg reflectors (DBR) with different reflection wavelengths were designed, and were used to fabricate microcavity organic light-emitting diodes (OLEDs) based on tris(8-hydroxyquinoline)-aluminum (Alq(3)) as the emitter and N, N'-di(naphthalene-1-yl)-N, N'-diphenyl-benzidine (NPB) as the hole-transporting layer. The microcavity was composed of DBR dielectric mirror and metal electrode aluminum (Al) mirror. Some effects of vertical optical Fabry-Perot microcavity on spontaneous emission in OLEDs were investigated. Spectral narrowing, enhancement of emitting intensity and anglular dependence of emission were observed due to the microcavity effect. It was found experimentally that the utilization of DBR is a better method to adjust the emissive mode in the resonant cavity in OLEDs well. Thus the realization of different color light emission becomes possible by the combination of carefully designed microcavity and electroluminescent organic semiconductors in a single LED.
Resumo:
Polyamide- 6(PA 6)/polytetrafluoroethylene is studied as a potential gate dielectric for flexible organic thin film transistors. The same method used for the formation of organic semiconductor and gate dielectric films greatly simplifies the fabrication process of devices. The fabricated transistors show good electrical characteristics. Ambipolar behaviour is observed even when the device is operated in air.
Resumo:
The dilute magnetic semiconductor of Sn1-x-yMnxFeyO2 (0 <= x <= 0.10, 0 <= y <= 0.10) Were syhthesized with the hydrothermal method using SnCl4, Mn(CH3COO)(2) center dot 4H(2)O and FeCl3 center dot 6H(2)O as the raw materials. The structure, morphologies and magnetic properties of the sample were characterized via X-ray powder diffractometer(XRD), transmission electron microscopy(TEM), Raman spectrum and superconducting and quantum interference device(SQUIT), and Mossbeaur spectrum. No secondary phase was found in the XRD spectrum. The morphology of the samples is affected by the kind or the mount of transition metal. The local vibrating model-of Mn Positioned SnO2 sites was found in Raman spectrum. The measured magnetic results indicate that when x = 0.10, y = 0, the sample exhibits strong magnetization in low-temperature (5 K), but the magnetization decrease rapidly at room. temperature; In contrast, when x = 0, y = 0.1, the sample's magnetization and coercivity are both small, but being temperature independent. Mossbeaur spectra indicates that part of the Fe is ferromagnetic coupled, and the simulating results indicate that the ferromagnetic character is intrinsic.
Resumo:
Ambipolar organic field-effect transistors (OFETs) are produced, based on organic heterojunctions fabricated by a two-step vacuum-deposition process. Copper phthalocyanine (CuPc) deposited at a high temperature (250 degrees C) acts as the first (p-type component) layer, and hexadecafluorophthalocyaninatocopper (F16CuPc) deposited at room temperature (25 degrees C) acts as the second (n-type component) layer. A heterojunction with an interpenetrating network is obtained as the active layer for the OFETs. These heterojunction devices display significant ambipolar charge transport with symmetric electron and hole mobilities of the order of 10(-4) cm(2) V-1 s(-1) in air. Conductive channels are at the interface between the F16CuPc and CuPc domains in the interpenetrating networks. Electrons are transported in the F16CuPc regions, and holes in the CuPc regions. The molecular arrangement in the heterojunction is well ordered, resulting in a balance of the two carrier densities responsible for the ambipolar electrical characteristics. The thin-film morphology of the organic heterojunction with its interpenetrating network structure can be controlled well by the vacuum-deposition process.
Resumo:
In the organic-inorganic perovskites family, the < 100 >-oriented type has been extensively investigated as a result of its unique magnetic, optical, and electrical properties, and only one type of < 110 >-oriented hybrid perovskite stabilized by methylammonium and iodoformamidinium cations or the latter themselves has been known so far. In this paper, another novel < 110 >-oriented organic-inorganic perovskite (C6H13N3)-PbBr4 (compound 1) has been prepared by reacting N-(3-aminopropyl)imidazole (API) with PbBr2 in hydrobromic acid. The crystal structure is determined, which indicates that the perovskite is stabilized by API. The introduction of the optically active organic ligand API into the hybrid perovskite results in a red shift and a great enhancement of photoluminescence in the perovskite with respect to organic ligand API itself. These results have been explained according to calculation based on density-functional theory. Moreover, the excellent film processing ability for the perovskite (C6H13N3)PbBr4 together with the improved optical properties makes it have potential application in optoelectronic devices.
Ambipolar organic field-effect transistors with air stability, high mobility, and balanced transport
Resumo:
Ambipolar organic field-effect transistors (OFETs) based on the organic heterojunction of copper-hexadecafluoro-phthalocyanine (F16CuPc) and 2,5-bis(4-biphenylyl) bithiophene (BP2T) were fabricated. The ambipolar OFETs eliminated the injection barrier for the electrons and holes though symmetrical Au source and drain electrodes were used, and exhibited air stability and balanced ambipolar transport behavior. High field-effect mobilities of 0.04 cm(2)/V s for the holes and 0.036 cm(2)/V s for the electrons were obtained. The capacitance-voltage characteristic of metal-oxide-semiconductor (MOS) diode confirmed that electrons and holes are transported at F16CuPc and BP2T layers, respectively. On this ground, complementary MOS-like inverters comprising two identical ambipolar OFETs were constructed.
Resumo:
In this work we demonstrate that hexagonal nanodisks of cadmium hydroxide with nanoporous structures could be fabricated by a facile hydrothermal treatment without using any templates or organic additives. With this method, the length of the hexagonal edge and thickness of the nanodisks can be adjusted through controlling the experimental conditions such as the pH value of the mother liquor and the initial concentration of the cadmium ion. On the basis of our experimental observations and understandings of the nanocrystal growth, the formation of the nanodisks is believed to mainly originate from the oriented attachment of small particles. Furthermore, the hexagonal Cd(OH)(2) nanodisks can be converted to CdO semiconductors with similar morphology by calcinations.
Resumo:
HigWy efficient DCJTB-doped device was realized by enhanced electron injection and exciton confinement. A fluorine end-capped linear phenylene/oxadiazole oligomer 2,5-bis(4-fluorobiphenyl-4'-yl)-1,3,4-oxadiazole (1) and a trifluoromethyl end-capped oligomer 2,5-bis(4-trifluoromethylbiphenyl-4'-yl)-1,3,4-oxadiazole (2) were designed and incorporated as an electron transporting/hole blocking material in the device structure ITO/NPB (60 mn)/DCJTB:Alq(3) (0.5%, 10 nm)/1 or 2 (20 nm)/Alq(3) (30 mn)/LiF (1 nm)/Al (100 nm). The devices showed highly efficient red luminescence. In particular, the device based on 1 achieved pure red luminescence at 620 run originating from DCJTB, with a narrow FWHI of 65 nm, maximal brightness of 13,300 cd/m(2) at voltage of 20.8 V and current density of ca. 355 mA/cm(2). High current and power efficiencies (> 3.6 cd/A. 1.01m/W) were retained within a wide range of current densities. Our results show efficient and stable DCJTB-doped red electroluminescence could be anticipated for practical applications by taking advantage of the present approaches. The control experiments using BCP were also studied.
Resumo:
We report the fabrication of organic thin-film transistors (OTFTs) with copper phthalocyanine (CuPc) as the semiconductor and calcium fluoride (CaF2) as the gate dielectric on the glass substrate. The fabricated transistors show a gate voltage dependent carrier field effect mobility that ranges from 0.001 to 0.5 cm(2) V-1 s(-1). In the devices, the CaF2 dielectric is formed by thermal evaporation; thus OTFTs with a top-gate structure can be fabricated. This provides a convenient way to produce high-performance OTFTs on a large scale and should be useful for the integration of organic displays.
Resumo:
Organic white-light-emitting devices ( OLEDs) based on a multimode resonant microcavity defined by a pair of dielectric mirrors and metal mirrors were presented. By selective effects of the quarter-wave dielectric stack mirror on mode, white light emission containing three individual narrow peaks of red, green and blue was achieved, and showed weak dependence on the viewing angle. The Commission Internationale De L'Eclairage ( CIE) chromaticity coordinates changed from ( 0.29, 0.37) at 0 degrees to ( 0.31, 0.33) at 40 degrees. Furthermore, the brightness and electroluminescence efficiency of the microcavity OLEDs were enhanced compared with noncavity OLEDs. The maximum brightness reached 1940 cd m(-2) at a current density of 200 mA cm(-2), and the maximum current efficiency and power efficiency are 1.6 cd A(-1) at a current density of 12 mA cm(-2) and 0.41 1m W-1 at a current density of 1.6 mA cm(-2), which are over 1.6 times higher than that of a noncavity OLED.
Resumo:
Based on the idea that the hardness of covalent crystal is intrinsic and equivalent to the sum of the resistance to the indenter of each bond per unit area, a semiempirical method for the evaluation of hardness of multicomponent crystals is presented. Applied to beta-BC2N crystal, the predicted value of hardness is in good agreement with the experimental value. It is found that bond density or electronic density, bond length, and degree of covalent bonding are three determinative factors for the hardness of a polar covalent crystal. Our method offers the advantage of applicability to a broad class of materials and initializes a link between macroscopic property and electronic structure from first principles calculation.
Resumo:
Five Ln(2)SrMCuO(6.5) oxides (M = Co, Ln = Y and Ho; M = Fe, Ln = Y, Ho, and Dy) were synthesized, and their crystal structures, IR spectra, and physical properties were studied. They have almost the same structure and crystallize in orthorhombic systems. Below room temperature, Y2SrFeCuO6.5, a known layered oxide, shows antiferromagnetic behavior, but the four new oxides are paramagnetic. Y2SrFeCuO6.5 fits the Curie-Weiss law in the temperature range 300-100 K, but Y2SrCoCuO6.5 shows complex magnetic behavior because of the disproportion of some Co+3 to Co+2 and Co+4 The five oxides are all p-type semiconductors in the measured temperature range and have large electrical resistivities at room temperature.
Resumo:
Bi1-xLaxSrMn2O6 and BiSr1-xCaxMn2O6 are prepared by solid state reaction. They are n-type semiconductors with ferromagnetism at room temperture. When Bi is substituted partly by rare earth, a negative magnetoresistance effect is observed in the pellet of Bi1-xLaxSrMn2O6. There are semiconductor-metal transitions at 820 K in BiSrMn2O6. The transitions are attributed to the magnetic transition at high temperature. The substitution of Ca for Sr makes the transition temperature increase. However, when Bi is partly substituted by La, the solid solution does not change into metal. (C) 1996 Academic Press, Inc.
Resumo:
Ln(2)Mo(3)O(12) and Ce2Mo3O12.25 are reduced by hydrogen yielding Mo4+ oxides of the formula Ln(2)Mo(3)O(9) (Ln = La, Ce, Pr, Nd, Sm, Gd and Dy). The new compound Ce2Mo3O9 has the same structure as other Ln(2)Mo(3)O(9) compounds. All of the products are single phase materials and crystallize in a tetragonal scheelite type structure with Mo2O6 clusters. The IR spectra of the Ln(2)Mo(3)O(9) oxides show two absorption bands. These compounds are black n-type semiconductors, and exhibit Curie-Weiss Law behavior from 100K to 250K. Temperature dependence of the electrical properties of these compounds were measured for the first time, and a semiconductor-metal transition was found at about 250 degrees C.