999 resultados para sandflies from caves
Resumo:
Protease production was carried out in solid state fermentation. The enzyme was purified through precipitation with ethanol at 72% followed by chromatographies in columns of Sephadex G75 and Sephacryl S100. It was purified 80-fold and exhibited recovery of total activity of 0.4%. SDS-PAGE analysis indicated an estimated molecular mass of 24.5 kDa and the N-terminal sequence of the first 22 residues was APYSGYQCSMQLCLTCALMNCA. Purified protease was only inhibited by EDTA (96.7%) and stimulated by Fe(2+) revealing to be a metalloprotease activated by iron. Optimum pH was 5.5, optimum temperature was 75 degrees C, and it was thermostable at 65 degrees C for 1 h maintaining more than 70% of original activity. Through enzyme kinetic studies, protease better hydrolyzed casein than azocasein. The screening of fluorescence resonance energy transfer (FRET) peptide series derived from Abz-KLXSSKQ-EDDnp revealed that the enzyme exhibited preference for Arg in P(1) (k(cat)/K(m) = 30.1 mM(-1) s(-1)).
Resumo:
This paper describes an analytical method for the rapid screening and identification of the phenolic constituents present in the polar extracts of different Lychnophora spp. using LC-UV/DAD-ESI-MS and LC-UV/DAD-ESI-MS/MS. Compounds were identified based on UV, retention time, MS experiments and MS/MS of precursor ion or standard. On-line phytochemical investigation of Lychnophora spp. allowed for the identification of flavonoids, chlorogenic acid derivatives and lactones. Some of the observed compounds were for the first time identified in Lychnophora species in a fast analytical procedure. The data obtained here may be helpful to the investigation of polar constituents from other Lychnophora species.
Resumo:
Under continuous photolysis at 675 nm, liposomal zinc phthalocyanine associated with nitrosyl ruthenium complex [Ru(NH.NHq)(tpy)NO](3+) showed the detection and quantification of nitric oxide (NO) and singlet oxygen ((1)O(2)) release. Photophysical and photochemical results demonstrated that the interaction between the nitrosyl ruthenium complex and the photosensitizer can enable an electron transfer process from the photosensitizer to the nitrosyl ruthenium complex which leads to NO release. Synergistic action of both photosensitizers and the nitrosyl ruthenium complex results in the production of reactive oxygen species and reactive nitrogen species, which is a potent oxidizing agent to many biological tissues, in particular neoplastic cells.
Resumo:
Voltage-gated potassium channel toxins (KTxs) are basic short chain peptides comprising 23-43 amino acid residues that can be cross-linked by 3 or 4 disulfide bridges. KTxs are classified into four large families: alpha-, beta-, gamma- and kappa-KTx. These peptides display varying selectivity and affinity for K(v) channel subtypes. In this work, a novel toxin from the Tityus serrulatus venom was isolated, characterized and submitted to a wide electrophysiological screening on 5 different subtypes of Nay channels (Na(V)1.4; Na(V)1.5; Na(V)1.6; Na(V)1.8 and DmNa(V)1) and 12 different subtypes of Kv channels (K(V)1.1 - K(V)1.6; K(V)2.1; K(V)3.1; K(V)4.2; K(V)4.3; Shaker IR and ERG). This novel peptide, named Ts15, has 36 amino acids, is crosslinked by 3 disulfide bridges, has a molecular mass of 3956 Da and pI around 9. Electrophysiological experiments using patch clamp and the two-electrode voltage clamp techniques show that Ts15 preferentially blocks K(V)1.2 and K(V)1.3 channels with an IC(50) value of 196 +/- 25 and 508 +/- 67 nM, respectively. No effect on Na(V) channels was observed, at all tested concentrations. Since Ts15 shows low amino acid identity with other known KTxs, it was considered a bona fide novel type of scorpion toxin. Ts15 is the unique member of the new alpha-Ktx21 subfamily and therefore was classified as alpha-Ktx21.1. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The ruthenium nitrosyl complex trans-[Ru(NO)(NH(3))(4)(py)](PF(6))(3) (pyNO), a nitric oxide (NO) donor, was studied in regard to the release of NO and its impact both on isolated mitochondria and HepG2 cells. In isolated mitochondria, NO release from pyNO was concomitant with NAD(P)H oxidation and, in the 25-100 mu M range, it resulted in dissipation of mitochondrial membrane potential, inhibition of state 3 respiration, ATP depletion and reactive oxygen species (ROS) generation. In the presence of Ca(2+), mitochondrial permeability transition (MPT), an unspecific membrane permeabilization involved in cell necrosis and some types of apoptosis, was elicited. As demonstrated by externalization of phosphatidylserine and activation of caspase-9 and caspase-3, pyNO (50-100 mu M) induced HepG2 cell death, mainly by apoptosis. The combined action of the NO itself, the peroxynitrite yielded by NO in the presence of reactive oxygen species (ROS) and the oxidative stress generated by the NAD(P)H oxidation is proposed to be involved in cell death by pyNO, both via respiratory chain inhibition and ROS levels increase, or even via MPT, if Ca(2+) is present. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
One hypothesis for the etiology of cell damage arising from iron overload is that its excess selectively affects mitochondria. Here we tested the effects of acute iron overload on liver mitochondria isolated from rats subjected to a single dose of i.p. 500 mg/kg iron-dextran. The treatment increased the levels of iron in mitochondria (from 21 +/- A 4 to 130 +/- A 7 nmol/mg protein) and caused both lipid peroxidation and glutathione oxidation. The mitochondria of iron-treated rats showed lower respiratory control ratio in association with higher resting respiration. The mitochondrial uncoupling elicited by iron-treatment did not affect the phosphorylation efficiency or the ATP levels, suggesting that uncoupling is a mitochondrial protective mechanism against acute iron overload. Therefore, the reactive oxygen species (ROS)/H(+) leak couple, functioning as a mitochondrial redox homeostatic mechanism could play a protective role in the acutely iron-loaded mitochondria.
Resumo:
Green tea (Camellia sinensis) and Ginkgo biloba extracts in cosmetic formulations have been suggested to protect the skin against UV-induced damage and skin ageing. Thus, it is very important to assess the human skin penetration of their major flavonoids to verify if they penetrate and remain in the skin to exert their proposed effects. The aim of this study was to evaluate the human skin penetration of epigallocatechin-3-gallate (EGCG) and quercetin from green tea and G. biloba extracts vehiculated in cosmetic formulations. This study was conducted with fresh dermatomed human Caucasian skin from abdominal surgery mounted on static Franz diffusion cells. Skin samples were mounted between two diffusion half-cells and 10 mg/cm(2) of formulations supplemented with 6% of green tea or G. biloba extract were applied on the skin surface. The receptor fluid was removed after 6 and 24 h and analyzed by high-performance liquid chromatography for the quantification of the flavonoids. The stratum corneum was removed by tape stripping and immersed in methanol and the epidermis was mechanically separated from the dermis and triturated in methanol to extract EGCG and quercetin. The results showed that the flavonoids under study penetrated into the skin, without reaching the receptor fluid. The majority of EGCG was quantified in the stratum corneum (0.87 mu g/cm(2)), which was statistically higher than the EGCG concentrations found in viable epidermis (0.54 mu g/cm(2)) and in the dermis (0.38 mu g/cm(2)). The majority of quercetin was quantified in the viable epidermis (0.23 mu g/cm(2)), which was statistically higher than the EGCG concentration found in the stratum corneum layer (0.17 mu g/cm(2)). Finally, it can be concluded that EGCG and quercetin from green tea and G. biloba extracts vehiculated in cosmetic formulations presented good skin penetration and retention, which can favor their skin effects. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Microencapsulation of Lippia sidoides essential oil was carried out by spray drying. Blends of maltodextrin and gum arabic were used as carrier. Spray dried microparticles were characterized using conventional (thermogravimetry, evolved gas analysis) and combined (thermogravimetry-mass spectrometry analysis) thermal analysis techniques in order to evaluate the abilities of carriers with different compositions in retaining and in releasing the core vs. dynamic heating. Thermal analysis was useful to evaluate the physico-chemical interactions between the core and carriers and to determine the protective effect of the carriers on the evaporation of essential oil.
Resumo:
Seven tetrahydrofuran lignans, isolated from Nectandra megapotamica (Lauraceae), were evaluated for their in vitro antileishmanial and antimalarial activities. Among the evaluated compounds, machilin-G (1a) and veraguensin (2a) showed the highest antileishmanial activities, displaying for both compounds an IC(50) value of 18 mu g/mL and an IC(50) value of 36 mu g/mL, while galgravin (1b), nectandrin-A (1c), nectandrin-B (1d), calopeptin (2b) and ganshisandrine (3) were inactive against Leishmania donovani. In the antimalarial assay against Plasmodium falciparum, it was observed that calopeptin (2b) displayed moderate activity, with IC(50) values of 3800 ng/mL (136 clone) and 3900 ng/mL (W2 clone), while the lignans 1a-1d, 2a and 3 were inactive. In order to compare the effect on the parasites with toxicity to mammalian cells, the cytotoxic activity of the isolated compounds were evaluated against the Vero cells, showing that all evaluated tetrahydrofuran lignans exhibited no cytotoxicity at the maximum dose tested. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Five structurally related pimarane diterpenes isolated from the roots of Viguiera arenaria and a further compound obtained by chemical derivatization were evaluated in vitro against the trypomastigote forms of Trypanosoma cruzi. The natural compound ent-15-pimarene-8 beta,19-diol and the derivative ent-8(14),15-pimaradiene-3 beta-acetoxy showed the highest trypanocidal activity, displaying IC50 values of 116.5 +/- 1.21 and 149.3 +/- 1.07 mu M, respectively, while the positive control, violet gentian, showed an IC50 of 76 mu M. Based on the results, it can be concluded that minor structural differences among the tested diterpenes influence significantly the trypanocidal activity, thus bringing new perspectives to the establishment of structure-activity relationships among this type of metabolites to the treatment of Chagas` disease. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Austroplenckia populnea (Celastraceae), known as ""marmelinho do campo"", is used in Brazilian folk medicine as antimicrobial, anti-inflammatory, and antitumoural agent. The aim of the present work was to evaluate the antimicrobial. antileishmanial and antimalarial activities of the crude hydroalcoholic extract of A. populnea (CHE) and some of its isolated compounds. The phytochemical study of the CHE was carried Out affording the isolation of methyl populnoate (1), populnoic acid (2), and stigmast-5-en-3-O-beta-(D-glucopyranoside) (3). This is the first time that the presence of compound 3 in A. populnea is reported. The results showed that the CHE presents antifungal and antibacterial activities, especially against Candida glabrata and Candida albicans, for which the CHE showed IC(50) values of 0.7 mu g mL(-1) and 5.5 mu g mL(-1), respectively, while amphotericin B showed an IC(50) value of 0.1 mu g mL(-1) against both microorganisms. Compounds 1-3 were inactive against all tested microorganisms. In the antileishmanial activity test against Leishmania donovani, the CHE showed an IC(50) value of 52 mu g mL(-1), while compounds 2 and 3 displayed an IC(50) value of 18 mu g mL(-1). In the antimalarial assay against Plasmodium falciparum (D6 and W2 clones), it was observed that all evaluated samples were inactive. In order to compare the effect on the parasites with the toxicity to mammalian cells, the cytotoxicity activity of the isolated compounds was evaluated against Vero cells, showing that all evaluated samples exhibited no cytotoxicity at the maximum dose tested.
Resumo:
In addition to known heliangolides, a new eudesmanolide was isolated from the leaf rinse extract of Viguiera robusta (Asteraceae). Structural elucidation was based oil spectral analysis. It is the first report on eudesmanolides in members of the subgenus Calanticaria of Viguiera. In this work, the main isolated compound, the furanoheliangolide budlein A, besides its previously, reported in vitro and in vivo anti-inflammatory activities, inhibited human neutrophil elastase release. The inhibition was at the concentration of (16.83 +/- 1.96) mu M for formylated bacterial tripeptide (fMLP) stimulation and (11.84 +/- 1.62) mu M for platelet aggregation factor (PAF) stimulation, being slightly less active than the reference drug parthenolide. The results are important to demonstrate the potential anti-inflammatory activities of sesquiterpene lactones and corroborate the previous studies using other targets.
Resumo:
Six new azaphilones, 5`-epichaetoviridin A (7), 4`-epichaetoviridin F (9), 12 beta-hydroxychaetoviridin C (10), and chaetoviridins G-I (11-13), and six known azaphilones, chaetoviridins A E (1-5) and 4`-epichaetoviridin A (8), were isolated from the endophytic fungus Chaetomium globosum cultivated in PDB medium for 21 days. The structure elucidation and the assignment of the relative configurations of the new natural products were based on detailed NMR and MS spectroscopic analyses. The structure of compound 1 was confirmed by single-crystal X-ray diffraction analysis. were determined using Mosher`s method. The antibiotic activity of the elegans infection model. The absolute configurations of compounds 4, 7, 8, and 12 compounds was evaluated using an in vivo Caenorhabditis elegans infection model.
Resumo:
The CH(2)Cl(2) extract of aerial parts of Eupatorium perfoliatum L. exhibits antiprotozoal activity under in vitro conditions, especially against Plasmodium falciparum (IC(50)=2.7 mu g/ml). The search for active compounds yielded seven sesquiterpene lactones: Four structurally similar guaianolides, one dimeric guaianolide, and two germacranolides. The guaianolides differ in the degree of oxidation at C-14, ranging from a hydroxyl group up to a free carboxylic acid. The dimeric guaianolide, structurally closely related to the monomers, displays an unusual type of interguaianolide linkage between C-14 and C-4. Except for the germacranolide euperfolitin, all STLs described here were hitherto unknown. Furthermore, the flavonoid aglycones eupafolin, hispidulin, patuletin, and kaempferol were identified in the extract, which, except for kaempferol, have not been described as constituents of E. perfoliatum before. The dimeric guaianolide was shown to be the most active constituent against Plasmodium falciparum (IC(50) = 2.0 mu M) and was less cytotoxic against rat skeletal myoblasts (IC(50) = 16.2 mu M, selectivity index of about 8). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Baccharis dracunculifolia D. C. (Asteraceae) is the most important plant source of the Brazilian green propolis. Since propolis is known for its antimicrobial activity, the aim of this work was to evaluate the showed that the leaves extract of B. dracunculifolia (BdE) presents antifungal and antibacterial activities, especially against Candida krusei and Cryptococcus neoformans, for which the BdE showed IC50 values of 65 mu g mL(-1) and 40 mu g mL(-1), respectively In comparison to the BdE, it was observed that the green propolis extract (GPE) showed better antimicrobial activity, displaying an IC50 value of 9 mu g mL(-1) against C krusei. Also, a phytochemical study of the BdE was carried out, affording the isolation of ursolic acid (1), 2 alpha-hydroxy-ursolic acid (2), isosakuranetin (3), aromadendrin-4`-methylether (4), baccharin (5), viscidone (6), hautriwaic acid lactone (7), and the clerodane diterpene 8. This is the first time that the presence of compounds 1, 2, and 8 in B. dracunculifolia has been reported. Among the isolated compounds, 1 and 2 showed antibacterial activity against methicillin-resistant Staphylococcus aureus, displaying IC50 values of 65 mu g mL(-1) and 40 mu g mL(-1), respectively. 3 was active against C neoformans, showing an IC50 value of 15 mu g mL(-1) and a MIC value of 40 mu g mL(-1), while compounds 4-8 were inactive against all tested microorganisms. The results showed that the BdE, similar to the GPE, displays antimicrobial activity, which may be related to the effect of several compounds present in the crude extract.