959 resultados para pretest probability
Resumo:
Malaria has been eliminated from over 40 countries with an additional 39 currently planning for, or committed to, elimination. Information on the likely impact of available interventions, and the required time, is urgently needed to help plan resource allocation. Mathematical modelling has been used to investigate the impact of various interventions; the strength of the conclusions is boosted when several models with differing formulation produce similar data. Here we predict by using an individual-based stochastic simulation model of seasonal Plasmodium falciparum transmission that transmission can be interrupted and parasite reintroductions controlled in villages of 1,000 individuals where the entomological inoculation rate is <7 infectious bites per person per year using chemotherapy and bed net strategies. Above this transmission intensity bed nets and symptomatic treatment alone were not sufficient to interrupt transmission and control the importation of malaria for at least 150 days. Our model results suggest that 1) stochastic events impact the likelihood of successfully interrupting transmission with large variability in the times required, 2) the relative reduction in morbidity caused by the interventions were age-group specific, changing over time, and 3) the post-intervention changes in morbidity were larger than the corresponding impact on transmission. These results generally agree with the conclusions from previously published models. However the model also predicted changes in parasite population structure as a result of improved treatment of symptomatic individuals; the survival probability of introduced parasites reduced leading to an increase in the prevalence of sub-patent infections in semi-immune individuals. This novel finding requires further investigation in the field because, if confirmed, such a change would have a negative impact on attempts to eliminate the disease from areas of moderate transmission.
Resumo:
Time-resolved photoluminescence spectroscopy experiments of three poly(2,8-indenofluorene) derivatives bearing different pendant groups are presented. A comparison of the photophysical properties of dilute solutions and thin films provides information on the chemical purity of the materials. The photophysical properties of poly(2,8-indenofluorene)s are correlated with the morphological characteristics of their corresponding films. Wide-angle X-ray scattering experiments reveal the order in these materials at the molecular level. The spectroscopic results confirm the positive impact of a new synthetic approach on the spectral purity of the poly(indenofluorene)s. It is concluded that complete side-chain substitution of the bridgehead carbon atoms C-6 and C-12 in the indenofluorene unit, prior to indenofluorene ring formation, reduces the probability of keto formation. Due to the intrinsic chemical purity of the arylated derivative, identification of a long-delayed spectral feature, other than the known keto band, is possible in the case of thin films. Controlled doping experiments on the arylated derivative with trace amounts of an indenofluorene-monoketone provide quantitative information on the rates of two major photophysical processes, namely, singlet photoluminescence emission and singlet photoluminescence quenching. These results allow the determination of the minimum keto concentration that can affect the intrinsic photophysical properties of this polymer. The data suggest that photoluminescence quenching operates in the doped films according to the Stern-Volmer formalism.
Resumo:
We consider a discrete agent-based model on a one-dimensional lattice, where each agent occupies L sites and attempts movements over a distance of d lattice sites. Agents obey a strict simple exclusion rule. A discrete-time master equation is derived using a mean-field approximation and careful probability arguments. In the continuum limit, nonlinear diffusion equations that describe the average agent occupancy are obtained. Averaged discrete simulation data are generated and shown to compare very well with the solution to the derived nonlinear diffusion equations. This framework allows us to approach a lattice-free result using all the advantages of lattice methods. Since different cell types have different shapes and speeds of movement, this work offers insight into population-level behavior of collective cellular motion.
Resumo:
We consider a discrete agent-based model on a one-dimensional lattice and a two-dimensional square lattice, where each agent is a dimer occupying two sites. Agents move by vacating one occupied site in favor of a nearest-neighbor site and obey either a strict simple exclusion rule or a weaker constraint that permits partial overlaps between dimers. Using indicator variables and careful probability arguments, a discrete-time master equation for these processes is derived systematically within a mean-field approximation. In the continuum limit, nonlinear diffusion equations that describe the average agent occupancy of the dimer population are obtained. In addition, we show that multiple species of interacting subpopulations give rise to advection-diffusion equations. Averaged discrete simulation data compares very well with the solution to the continuum partial differential equation models. Since many cell types are elongated rather than circular, this work offers insight into population-level behavior of collective cellular motion.
Resumo:
A discrete agent-based model on a periodic lattice of arbitrary dimension is considered. Agents move to nearest-neighbor sites by a motility mechanism accounting for general interactions, which may include volume exclusion. The partial differential equation describing the average occupancy of the agent population is derived systematically. A diffusion equation arises for all types of interactions and is nonlinear except for the simplest interactions. In addition, multiple species of interacting subpopulations give rise to an advection-diffusion equation for each subpopulation. This work extends and generalizes previous specific results, providing a construction method for determining the transport coefficients in terms of a single conditional transition probability, which depends on the occupancy of sites in an influence region. These coefficients characterize the diffusion of agents in a crowded environment in biological and physical processes.
Resumo:
Both environmental economists and policy makers have shown a great deal of interest in the effect of pollution abatement on environmental efficiency. In line with the modern resources available, however, no contribution is brought to the environmental economics field with the Markov chain Monte Carlo (MCMC) application, which enables simulation from a distribution of a Markov chain and simulating from the chain until it approaches equilibrium. The probability density functions gained prominence with the advantages over classical statistical methods in its simultaneous inference and incorporation of any prior information on all model parameters. This paper concentrated on this point with the application of MCMC to the database of China, the largest developing country with rapid economic growth and serious environmental pollution in recent years. The variables cover the economic output and pollution abatement cost from the year 1992 to 2003. We test the causal direction between pollution abatement cost and environmental efficiency with MCMC simulation. We found that the pollution abatement cost causes an increase in environmental efficiency through the algorithm application, which makes it conceivable that the environmental policy makers should make more substantial measures to reduce pollution in the near future.
Resumo:
Potential conflicts exist between biodiversity conservation and climate-change mitigation as trade-offs in multiple-use land management. This study aims to evaluate public preferences for biodiversity conservation and climate-change mitigation policy considering respondents’ uncertainty on their choice. We conducted a choice experiment using land-use scenarios in the rural Kushiro watershed in northern Japan. The results showed that the public strongly wish to avoid the extinction of endangered species in preference to climate-change mitigation in the form of carbon sequestration by increasing the area of managed forest. Knowledge of the site and the respondents’ awareness of the personal benefits associated with supporting and regulating services had a positive effect on their preference for conservation plans. Thus, decision-makers should be careful about how they provide ecological information for informed choices concerning ecosystem services tradeoffs. Suggesting targets with explicit indicators will affect public preferences, as well as the willingness of the public to pay for such measures. Furthermore, the elicited-choice probabilities approach is useful for revealing the distribution of relative preferences for incomplete scenarios, thus verifying the effectiveness of indicators introduced in the experiment.
Resumo:
Approximate Bayesian Computation’ (ABC) represents a powerful methodology for the analysis of complex stochastic systems for which the likelihood of the observed data under an arbitrary set of input parameters may be entirely intractable – the latter condition rendering useless the standard machinery of tractable likelihood-based, Bayesian statistical inference [e.g. conventional Markov chain Monte Carlo (MCMC) simulation]. In this paper, we demonstrate the potential of ABC for astronomical model analysis by application to a case study in the morphological transformation of high-redshift galaxies. To this end, we develop, first, a stochastic model for the competing processes of merging and secular evolution in the early Universe, and secondly, through an ABC-based comparison against the observed demographics of massive (Mgal > 1011 M⊙) galaxies (at 1.5 < z < 3) in the Cosmic Assembly Near-IR Deep Extragalatic Legacy Survey (CANDELS)/Extended Groth Strip (EGS) data set we derive posterior probability densities for the key parameters of this model. The ‘Sequential Monte Carlo’ implementation of ABC exhibited herein, featuring both a self-generating target sequence and self-refining MCMC kernel, is amongst the most efficient of contemporary approaches to this important statistical algorithm. We highlight as well through our chosen case study the value of careful summary statistic selection, and demonstrate two modern strategies for assessment and optimization in this regard. Ultimately, our ABC analysis of the high-redshift morphological mix returns tight constraints on the evolving merger rate in the early Universe and favours major merging (with disc survival or rapid reformation) over secular evolution as the mechanism most responsible for building up the first generation of bulges in early-type discs.
Resumo:
Background Designing novel proteins with site-directed recombination has enormous prospects. By locating effective recombination sites for swapping sequence parts, the probability that hybrid sequences have the desired properties is increased dramatically. The prohibitive requirements for applying current tools led us to investigate machine learning to assist in finding useful recombination sites from amino acid sequence alone. Results We present STAR, Site Targeted Amino acid Recombination predictor, which produces a score indicating the structural disruption caused by recombination, for each position in an amino acid sequence. Example predictions contrasted with those of alternative tools, illustrate STAR'S utility to assist in determining useful recombination sites. Overall, the correlation coefficient between the output of the experimentally validated protein design algorithm SCHEMA and the prediction of STAR is very high (0.89). Conclusion STAR allows the user to explore useful recombination sites in amino acid sequences with unknown structure and unknown evolutionary origin. The predictor service is available from http://pprowler.itee.uq.edu.au/star.
Resumo:
The travel and tourism industry has come to rely heavily on information and communication technologies to facilitate relations with consumers. Compiling consumer data profiles has become easier and it is widely thought that consumers place great importance on how that data is handled by firms. Lack of trust may cause consumers to have privacy concerns and may, in turn, have an adverse impact on consumers’ willingness to purchase online. Three specific aspects of privacy that have received attention from researchers are unauthorized use of secondary data, invasion of privacy, and errors. A survey study was undertaken to examine the effects of these factors on both prior purchase of travel products via the Internet and future purchase probability. Surprisingly, no significant relationships were found to indicate that such privacy concerns affect online purchase behavior within the travel industry. Implications for managers are discussed.
A tag-based personalized item recommendation system using tensor modeling and topic model approaches
Resumo:
This research falls in the area of enhancing the quality of tag-based item recommendation systems. It aims to achieve this by employing a multi-dimensional user profile approach and by analyzing the semantic aspects of tags. Tag-based recommender systems have two characteristics that need to be carefully studied in order to build a reliable system. Firstly, the multi-dimensional correlation, called as tag assignment
Resumo:
Demand response can be used for providing regulation services in the electricity markets. The retailers can bid in a day-ahead market and respond to real-time regulation signal by load control. This paper proposes a new stochastic ranking method to provide regulation services via demand response. A pool of thermostatically controllable appliances (TCAs) such as air conditioners and water heaters are adjusted using direct load control method. The selection of appliances is based on a probabilistic ranking technique utilizing attributes such as temperature variation and statuses of TCAs. These attributes are stochastically forecasted for the next time step using day-ahead information. System performance is analyzed with a sample regulation signal. Network capability to provide regulation services under various seasons is analyzed. The effect of network size on the regulation services is also investigated.
Resumo:
A framework supporting the systematic development of safety cases for Unmanned Aircraft System (UAS) operations in a broad range of civil and commercial applications is presented. The case study application is the use of UAS for disaster response. In those States where regulations do not preclude UAS operations altogether, approvals for UAS operations can be granted on a case-by-case basis contingent on the provision of a safety case acceptable to the relevant National Airworthiness Authority (NAA). A safety case for UAS operations must show how the risks associated with the hazards have been managed to an acceptable level. The foundational components necessary for structuring and assessing these safety cases have not yet been proposed. Barrier-bow-tie models are used in this paper to structure the safety case for the two primary hazards of 1) a ground impact, and 2) a Mid-Air Collision (MAC). The models establish the set of Risk Control Variables (RCVs) available to reduce the risk. For the ground-impact risk model, seven RCVs are identified which in combination govern the probability of an accident. Similarly, ten RCVs are identified within the MAC model. The effectiveness of the RCVs and how they can implemented in terms of processes, policies, devices, practices, or other actions for each of the case-study applications are discussed. The framework presented can provide for the more systematic and consistent regulation of UAS through a "safety target" approach.
Resumo:
Teaching adolescents to use self-management strategies (SMS's) may be an effective approach to promoting lifelong physical activity (PA). However, the extent to which adolescents use SMS's and their impact on current PA have not been studied previously. The aims of this study were: 1) describe the prevalence of SMS use in adolescents; and 2) determine relationships between SMS use, PA self-efficacy, and PA participation. 197 students completed questionnaires measuring use of SMS's, self-efficacy, and PA behavior. The most prevalent SMS's (>30%) were thinking about the benefits of PA, making PA more enjoyable, choosing activities that are convenient, setting aside time to do PA, and setting goals to do PA. Less than 10% reported rewarding oneself for PA, writing planned activities in a book or calendar, and keeping charts of PA. SMS use was associated with increased self-efficacy (r = 0.47, P < .001) and higher levels of PA (r = 0.34 P < .001). A one unit difference in SMS scores was associated with a ~ 4-fold increase in the probability of being active (OR = 3.7, 95% CI = 1.8-7.4). Although strongly associated with PA, a relatively small percentage of adolescents routinely use SMS's.