975 resultados para plates
Resumo:
The influence of two secondary effects, rotatory inertia and presence of a crack, on the dynamic plastic shear failure of a cantilever with an attached mass block at its tip subjected to impulsive loading is investigated. It is illustrated that the consideration of the rotatory inertia of the cantilever and the presence of a crack at the upper root of the beam both increase the initial kinetic energy of the block required to cause shear failure at the interface between the beam tip and the tip mass, where the initial velocity has discontinuity Therefore, the influence of these two secondary effects on the dynamic shear failure is not negligible.
Resumo:
The mechanical behavior of dual phase steel plates is affected by internal stresses created during martensite transformation. Analytical modelling of this effect is made by considering a unit cell made of martensite inclusion in a ferrite matrix. A large strain finite element analysis is then performed to obtain the plane stress deformation state. Displayed numerically are the development of the plastic zone and distribution of local state of stress and strain. Studied also are the shape configuration of the martensite (hard-phase) that influences the interfacial condition as related to stress transmission and damage. Internal stresses are found to enhance the global flow stress after yield initiation in the ferrite matrix. Good agreement is obtained between the analytical results and experimental observations.
Resumo:
The vibration analysis of an elastic container with partially filled fluid was investigated in this paper. The container is made of a thin cylinder and two circular plates at the ends. The axis of the cylinder is in the horizontal direction. It is difficult to solve this problem because the complex system is not axially symmetric. The equations of motion for this system were derived. An incompressible and ideal fluid model is used in the present work. Solutions of the equations were obtained by the generalized variational method. The solution was expressed in a series of normalized generalized Fourier's functions. This series converged rapidly, and so its approximate solution was obtained with high precision. The agreement of the calculated values with the experimental result is good. It should be mentioned that with our method, the computer time is less than that with the finite-element method.
Resumo:
The strain energy density criterion due to Sih is used to predict fracture loads of two thin plates subjected to large elastic-plastic deformation. The prediction is achieved with a finite element analysis which is based on Hill's variational principle for incremental deformations capable of solving gross yielding problems involving arbitrary amounts of deformation. The computed results are in excellent agreement with those obtained in Sih's earlier analysis and with an experimental observation.
Resumo:
Resumo:
Table of Contents [pdf, 1 Kb] Summary [pdf, 85 Kb] Introduction [pdf, 0.8 Mb] Major Species and Stocks of Crabs in the PICES Region [pdf, 1.23 Mb] Major Species and Stocks of Shrimps in the PICES Region [pdf, 0.5 Mb] Oceanography [pdf, 0.4 Mb] Sampling and Data Analysis [pdf, 0.38 Mb] Acknowledgements [pdf, 0.27 Mb] References [pdf, 0.33 Mb] Appendices [pdf, 0.3 Mb] Plates 1-5 [pdf, 0.95 Mb] (Document contains 83 pages)
Resumo:
Hypoptopoma inexspectata is diagnosed and redescribed based on the examination of additional material and comparison with its congeners. This poorly known hypoptopomine species is distributed in the Paraguay and Paraná river draínages. Hypoptopoma inexspectata is diagnosable based on the autapomorphy biserial arrangement of anterior snout rostral margin odontodes, laterally extended to limit between second and third infraorbital plates, with dorsally directed dorsad series separated from ventrally directed ventrad series by a narrow odontode-free area, which at the level of first and second infraorbital plates is reduced to a dividing line of the series. The species can be further distinguished by the combination (1) low number of canal-bearing lateral plates (20-22, typically 21), (2) presence of a shield of prepectoral dermal plates, (3) arrangement of abdominal plates in one paired series of 3-5 plates, (4) shorter least interorbital distance 4856% head lengh, (5) larger horizontal eye diameter 17-20% head lengh, and (6) least orbit-nare distance 812% head lengh. Intraspecific variation skull dermal bones, neuracranium and suspensorium bones, dermal plates, adipose fin is reported. (PDF has 20 pages.)
Resumo:
本书阐明了板壳断裂理论的基础。论证了Reissner型板壳断裂理论的科学性、经典板壳断裂理论的缺陷及在一定范围内仍具有的实用价值;介绍了作者所创意的研究Reissner型板壳断裂纹尖端场的方法等。
目录
- §1.1 板壳弯曲断裂问题
- §1.2 Kirchhoff经典板壳弯曲断裂理论
- §1.3 Reissner型板壳弯曲断裂理论
- §1.4 Kirchhoff与Reissner型板壳弯曲断裂理论的比较
- §1.5 含裂纹有限尺寸板壳断裂分析的局部-整体法
- §1.6 含表面裂纹板壳
- §2.1 Kirchhoff板的基本概念和基本假定
- §2.2 基本公式与弹性曲面微分方程
- §2.3 边界条件
- §2.4 弹性薄板的应变能
- §2.5 极坐标下的挠曲面微分方程与内力公式
- §2.6 裂纹尖端场特征展开式通项公式
- §2.7 Kirchhoff板弯曲应力强度因子
- §3.1 基本方程和公式的复变函数表示
- §3.2 所引入函数的确定程度与一般形式
- §3.3 坐标变换与边界条件
- §3.4 运用保角变换方法求解孔口问题
- §3.5 应力强度因子与函数Φ(z)的关系
- §3.6 复变-主部分析法之应用简例
- §3.7 共直线裂纹问题的一般解答
- §3.8 典型弯曲裂纹问题的解答及弯曲应力强度因子公式
- §3.9 共圆曲线裂纹问题的解答及弯曲应力强度因子公式
- §4.1 裂纹尖端奇异元的位移模式与弯曲应力强度因子
- §4.2 裂纹尖端奇异元的刚度矩阵
- §4.3 裂纹尖端奇异元与常规单元的连接
- §4.4 解析法与数值法的结果比较与讨论
- §4.5 两共线半无限裂纹问题的定解条件及解的实用价值
- §5.1 Reissner型板的基本假定
- §5.2 Reissner型板的基本公式与平衡微分方程
- §5.3 基本方程的简化
- §5.4 边界条件
- §5.5 极坐标下的基本公式与平衡微分方程
- §5.6 两种平板理论用于无裂纹板时的比较
- §5.7 两种乎板理论用于含裂纹板时的比较
- §6.1 基本方程和一般求解方法
- §9.1 局部-整体法与其它解析和数值法的结果比较
- §9.2 边界对应力强度因子的影响
- §9.3 板的支承条件及长宽比的影响
- §9.5 计算Reissner型板应力强度因子的一组近似方程与近似解法
- §9.4 Reissner型板理论与Kirchhoff板理论所得应力强度因子的比较
- §9.6 关于数值计算的几点讨论
Resumo:
Early illustrated book about fish, fishing and fisheries by one of the preeminent scientific investigators of the French enlightenment. This work deals extensively with the species of fish found in Europe and beyond, their habits and habitats, techniques and equipment used in fishing and fish processing, and many other aspects of these endeavours. Roughly 185 engraved plates illustrate the text. The scans for this version come from 3 volumes bound in two parts in folio.
Resumo:
Developmental stages of 22 species representing 16 genera of agonid fishes occurring in the northeastern Pacific Ocean from San Francisco Bay to the Arctic Ocean are presented. Three of these species also occur in the North Atlantic Ocean. Larval stages of nine species are described for the first time. Additional information or illustrations intended to augment original descriptions are provided for eight species. Information on five other species is provided from the literature for comparative purposes. The primary objective of this guide is to present taxonomic characters to help identify the early life history stages of agonid fishes in field collections. Meristic, morphometric, osteological, and pigmentation characters are used to identify agonid larvae. Meristic features include numbers of median-fin elements, pectoral-fin rays, dermal plates, and vertebrae. Eye diameter, body depth at the pectoral-fin origin, snout to first dorsal-fin length, and pectoral-fin length are the most useful morphological characters. Presence, absence, numbers, and/or patterns of dermal plates in lateral rows or on the ventral surface of the gut are also useful. Other important characters are the presence, absence, numbers, and ornamentation of larval head spines. Lastly, distinct pigmentation patterns are often diagnostic. The potential utility of larval characters in phylogenetic analysis of the family Agonidae is discussed. (PDF file contains 92 pages.)
Resumo:
Covers the history of the study of boring sponges, taxonomy and distributions. Also includes identification of species, descriptions, key, references and plates. (PDF contains 30 pages)
Resumo:
The static and dynamic instabilities of a torsional MEMS/NEMS actuator caused by capillary effects are studied, respectively. An instability number, eta, is defined, and the critical gap distance, g(cr), between the mainplate and the substrate is derived. According to the values of eta and g, the instability criteria of the actuator are presented. The dimensionless motion equation of the MEMS/NEMS torsional actuator is derived when it makes nonlinear oscillation under capillary force. The qualitative analysis of the nonlinear equation is made, and the phase portraits are presented on the phase plane. In addition, the bifurcation phenomena in the system are also analyzed. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Light microscopy has been one of the most common tools in biological research, because of its high resolution and non-invasive nature of the light. Due to its high sensitivity and specificity, fluorescence is one of the most important readout modes of light microscopy. This thesis presents two new fluorescence microscopic imaging techniques: fluorescence optofluidic microscopy and fluorescent Talbot microscopy. The designs of the two systems are fundamentally different from conventional microscopy, which makes compact and portable devices possible. The components of the devices are suitable for mass-production, making the microscopic imaging system more affordable for biological research and clinical diagnostics.
Fluorescence optofluidic microscopy (FOFM) is capable of imaging fluorescent samples in fluid media. The FOFM employs an array of Fresnel zone plates (FZP) to generate an array of focused light spots within a microfluidic channel. As a sample flows through the channel and across the array of focused light spots, a filter-coated CMOS sensor collects the fluorescence emissions. The collected data can then be processed to render a fluorescence microscopic image. The resolution, which is determined by the focused light spot size, is experimentally measured to be 0.65 μm.
Fluorescence Talbot microscopy (FTM) is a fluorescence chip-scale microscopy technique that enables large field-of-view (FOV) and high-resolution imaging. The FTM method utilizes the Talbot effect to project a grid of focused excitation light spots onto the sample. The sample is placed on a filter-coated CMOS sensor chip. The fluorescence emissions associated with each focal spot are collected by the sensor chip and are composed into a sparsely sampled fluorescence image. By raster scanning the Talbot focal spot grid across the sample and collecting a sequence of sparse images, a filled-in high-resolution fluorescence image can be reconstructed. In contrast to a conventional microscope, a collection efficiency, resolution, and FOV are not tied to each other for this technique. The FOV of FTM is directly scalable. Our FTM prototype has demonstrated a resolution of 1.2 μm, and the collection efficiency equivalent to a conventional microscope objective with a 0.70 N.A. The FOV is 3.9 mm × 3.5 mm, which is 100 times larger than that of a 20X/0.40 N.A. conventional microscope objective. Due to its large FOV, high collection efficiency, compactness, and its potential for integration with other on-chip devices, FTM is suitable for diverse applications, such as point-of-care diagnostics, large-scale functional screens, and long-term automated imaging.
Resumo:
The scalability of CMOS technology has driven computation into a diverse range of applications across the power consumption, performance and size spectra. Communication is a necessary adjunct to computation, and whether this is to push data from node-to-node in a high-performance computing cluster or from the receiver of wireless link to a neural stimulator in a biomedical implant, interconnect can take up a significant portion of the overall system power budget. Although a single interconnect methodology cannot address such a broad range of systems efficiently, there are a number of key design concepts that enable good interconnect design in the age of highly-scaled CMOS: an emphasis on highly-digital approaches to solving ‘analog’ problems, hardware sharing between links as well as between different functions (such as equalization and synchronization) in the same link, and adaptive hardware that changes its operating parameters to mitigate not only variation in the fabrication of the link, but also link conditions that change over time. These concepts are demonstrated through the use of two design examples, at the extremes of the power and performance spectra.
A novel all-digital clock and data recovery technique for high-performance, high density interconnect has been developed. Two independently adjustable clock phases are generated from a delay line calibrated to 2 UI. One clock phase is placed in the middle of the eye to recover the data, while the other is swept across the delay line. The samples produced by the two clocks are compared to generate eye information, which is used to determine the best phase for data recovery. The functions of the two clocks are swapped after the data phase is updated; this ping-pong action allows an infinite delay range without the use of a PLL or DLL. The scheme's generalized sampling and retiming architecture is used in a sharing technique that saves power and area in high-density interconnect. The eye information generated is also useful for tuning an adaptive equalizer, circumventing the need for dedicated adaptation hardware.
On the other side of the performance/power spectra, a capacitive proximity interconnect has been developed to support 3D integration of biomedical implants. In order to integrate more functionality while staying within size limits, implant electronics can be embedded onto a foldable parylene (‘origami’) substrate. Many of the ICs in an origami implant will be placed face-to-face with each other, so wireless proximity interconnect can be used to increase communication density while decreasing implant size, as well as facilitate a modular approach to implant design, where pre-fabricated parylene-and-IC modules are assembled together on-demand to make custom implants. Such an interconnect needs to be able to sense and adapt to changes in alignment. The proposed array uses a TDC-like structure to realize both communication and alignment sensing within the same set of plates, increasing communication density and eliminating the need to infer link quality from a separate alignment block. In order to distinguish the communication plates from the nearby ground plane, a stimulus is applied to the transmitter plate, which is rectified at the receiver to bias a delay generation block. This delay is in turn converted into a digital word using a TDC, providing alignment information.