899 resultados para micro-incandescent lamp
Resumo:
As the demand for miniature products and components continues to increase, the need for manufacturing processes to provide these products and components has also increased. To meet this need, successful macroscale processes are being scaled down and applied at the microscale. Unfortunately, many challenges have been experienced when directly scaling down macro processes. Initially, frictional effects were believed to be the largest challenge encountered. However, in recent studies it has been found that the greatest challenge encountered has been with size effects. Size effect is a broad term that largely refers to the thickness of the material being formed and how this thickness directly affects the product dimensions and manufacturability. At the microscale, the thickness becomes critical due to the reduced number of grains. When surface contact between the forming tools and the material blanks occur at the macroscale, there is enough material (hundreds of layers of material grains) across the blank thickness to compensate for material flow and the effect of grain orientation. At the microscale, there may be under 10 grains across the blank thickness. With a decreased amount of grains across the thickness, the influence of the grain size, shape and orientation is significant. Any material defects (either natural occurring or ones that occur as a result of the material preparation) have a significant role in altering the forming potential. To date, various micro metal forming and micro materials testing equipment setups have been constructed at the Michigan Tech lab. Initially, the research focus was to create a micro deep drawing setup to potentially build micro sensor encapsulation housings. The research focus shifted to micro metal materials testing equipment setups. These include the construction and testing of the following setups: a micro mechanical bulge test, a micro sheet tension test (testing micro tensile bars), a micro strain analysis (with the use of optical lithography and chemical etching) and a micro sheet hydroforming bulge test. Recently, the focus has shifted to study a micro tube hydroforming process. The intent is to target fuel cells, medical, and sensor encapsulation applications. While the tube hydroforming process is widely understood at the macroscale, the microscale process also offers some significant challenges in terms of size effects. Current work is being conducted in applying direct current to enhance micro tube hydroforming formability. Initially, adding direct current to various metal forming operations has shown some phenomenal results. The focus of current research is to determine the validity of this process.
Resumo:
This technical report discusses the application of Lattice Boltzmann Method (LBM) in the fluid flow simulation through porous filter-wall of disordered media. The diesel particulate filter (DPF) is an example of disordered media. DPF is developed as a cutting edge technology to reduce harmful particulate matter in the engine exhaust. Porous filter-wall of DPF traps these soot particles in the after-treatment of the exhaust gas. To examine the phenomena inside the DPF, researchers are looking forward to use the Lattice Boltzmann Method as a promising alternative simulation tool. The lattice Boltzmann method is comparatively a newer numerical scheme and can be used to simulate fluid flow for single-component single-phase, single-component multi-phase. It is also an excellent method for modelling flow through disordered media. The current work focuses on a single-phase fluid flow simulation inside the porous micro-structure using LBM. Firstly, the theory concerning the development of LBM is discussed. LBM evolution is always related to Lattice gas Cellular Automata (LGCA), but it is also shown that this method is a special discretized form of the continuous Boltzmann equation. Since all the simulations are conducted in two-dimensions, the equations developed are in reference with D2Q9 (two-dimensional 9-velocity) model. The artificially created porous micro-structure is used in this study. The flow simulations are conducted by considering air and CO2 gas as fluids. The numerical model used in this study is explained with a flowchart and the coding steps. The numerical code is constructed in MATLAB. Different types of boundary conditions and their importance is discussed separately. Also the equations specific to boundary conditions are derived. The pressure and velocity contours over the porous domain are studied and recorded. The results are compared with the published work. The permeability values obtained in this study can be fitted to the relation proposed by Nabovati [8], and the results are in excellent agreement within porosity range of 0.4 to 0.8.
Resumo:
A microfluidic hydrogen generator is presented in this work. Its fabrication, characterization, and integration with a micro proton exchange membrane (PEM) fuel cell are described. Hydrogen gas is generated by the hydrolysis of aqueous ammonia borane. Gas generation, as well as the circulation of ammonia borane from a rechargeable fuel reservoir, is performed without any power consumption. To achieve this, directional growth and selective venting of hydrogen gas is maintained in the microchannels, which results in the circulation of fresh reactant from the fuel reservoir. In addition to this self-circulation mechanism, the hydrogen generator has been demonstrated to self-regulate gas generation to meet demands of a connected micro fuel cell. All of this is done without parasitic power consumption from the fuel cell. Results show its feasibility in applications of high-impedance systems. Lastly, recommendations for improvements and suggestions for future work are described
Resumo:
The study of the micro-fauna of Montana formations has been almost entirely neglected. Because the petroleum industry of this state has not felt the necessity for using micro-paleontology in its sub-surface correlations, the science has been but little used. The Montana Power Company has had an examination made of some of its well cuttings by a competent micro-paleontologist who found some foraminifera in Mesozoic sediments. However, no investigations have been made to determine the presence and character of the micro-fauna of the Paleozoic formations of Montana.
Resumo:
This study examines the consequences of living in segregated and mixed neighbourhoods on ingroup bias and offensive action tendencies, taking into consideration the role of intergroup experiences and perceived threat. Using adult data from a cross-sectional survey in Belfast, Northern Ireland, we tested a model that examined the relationship between living in segregated (N = 396) and mixed (N = 562) neighbourhoods and positive contact, exposure to violence, perceived threat and outgroup orientations. Our results show that living in mixed neighbourhoods was associated with lower ingroup bias and reduced offensive action tendencies. These effects were partially mediated by positive contact. However, our analysis also shows that respondents living in mixed neighbourhoods report higher exposure to political violence and higher perceived threat to physical safety. These findings demonstrate the importance of examining both social experience and threat perceptions when testing the relationship between social environment and prejudice.
Resumo:
Anomie theorists have been reporting the suppression of shared welfare orientations by the overwhelming dominance of economic values within capitalist societies since before the outset of neoliberalism debate. Obligations concerning common welfare are more and more often subordinated to the overarching aim of realizing economic success goals. This should be especially valid with for social life in contemporary market societies. This empirical investigation examines the extent to which market imperatives and values of the societal community are anchored within the normative orientations of market actors. Special attention is paid to whether the shape of these normative orientations varies with respect to the degree of market inclusion. Empirical analyses, based on the data of a standardized written survey within the German working population carried out in 2002, show that different types of normative orientation can be distinguished among market actors. These types are quite similar to the well-known types of anomic adaptation developed by Robert K. Merton in “Social Structure and Anomie” and are externally valid with respect to the prediction of different forms of economic crime. Further analyses show that the type of normative orientation actors adopt within everyday life depends on the degree of market inclusion. Confirming anomie theory, it is shown that the individual willingness to subordinate matters of common welfare to the aim of economic success—radical market activism—gets stronger the more actors are included in the market sphere. Finally, the relevance of reported findings for the explanation of violent behavior, especially with view to varieties of corporate violence, is discussed.
Resumo:
The dominant emotion in violence-threatening situations is confrontational tension/fear (ct/f), which causes most violence to abort, or to be carried out inaccurately and incompetently. For violence to be successful, there must be a pathway around the barrier of ct/f. These pathways include: attacking the weak; audience-oriented staged and controlled fair fights; confrontation-avoiding remote violence; confrontation-avoiding by deception; confrontation-avoiding by absorption in technique. Successfully violent persons, on both sides of the law, are those who have developed these skilled interactional techniques. Since successful violence involves dominating the emotional attention space, only a small proportion of persons can belong to the elite which does most of each type of violence. Macro-violence, including victory and defeat in war, and in struggles of paramilitaries and social movements, is shaped by both material resources and social/emotional resources for maintaining violent organizations and forcing their opponents into organizational breakdown. Social and emotional destruction generally precedes physical destruction.
Resumo:
Delivering cochlear implants through a minimally invasive tunnel (1.8 mm in diameter) from the mastoid surface to the inner ear is referred to as direct cochlear access (DCA). Based on cone beam as well as micro-computed tomography imaging, this in vitro study evaluates the feasibility and efficacy of manual cochlear electrode array insertions via DCA. Free-fitting electrode arrays were inserted in 8 temporal bone specimens with previously drilled DCA tunnels. The insertion depth angle, procedural time, tunnel alignment as well as the inserted scala and intracochlear trauma were assessed. Seven of the 8 insertions were full insertions, with insertion depth angles higher than 520°. Three cases of atraumatic scala tympani insertion, 3 cases of probable basilar membrane rupture and 1 case of dislocation into the scala vestibuli were observed (1 specimen was damaged during extraction). Manual electrode array insertion following a DCA procedure seems to be feasible and safe and is a further step toward clinical application of image-guided otological microsurgery.